The herpes simplex virus genome can enter a repressed transcriptional state (latency) in sensory neurons of the host nervous system. Although reduced permissiveness of the neuronal environment is widely accepted as a causal factor, the molecular pathway(s) directing and maintaining the viral genome in the latent state remains undefined. Over the past decade, the field has been strongly influenced by the observations of Kosz-Vnenchak et al. The current understanding of the biology underlying the complex life cycle of herpes simplex virus (HSV) is incomplete (recently reviewed [16]). A central remaining question is how a virus geared for lytic replication enters a latent state in a sensory neuron and subsequently resumes lytic replication in this same neuron at a future time. A decade ago, Kosz-Vnenchak et al. proposed that neuronal latency is directed by a novel HSV gene expression regulatory pathway (10). Their hypothesis was based on two observations, both suggesting that, in trigeminal ganglion (TG) neurons, synthesis of viral DNA is a prerequisite for effective levels of immediate-early (IE) and early (E) gene expression. First, during acute infection with two viral thymidine kinase (TK)-null mutants, I⌭ and ⌭ gene expression was virtually undetectable in TGs despite evidence of transport to the ganglia (9). In a second study, latently infected ganglia undergoing reactivation in explant were examined. In this case, a TK-null mutant as well as a wild-type (wt) strain in the presence or absence of viral DNA replication inhibitors was examined. Again, expression of IE and E genes appeared to be dependent on viral DNA replication (10). These investigators argued that, since functional viral TK had been shown to be required for efficient replication in cultured growth-arrested cells (3, 7) and the HSV TK is believed to provide deoxyribonucleoside triphosphate precursors for viral DNA replication in resting cells not expressing the host enzyme, the defect in replication in resting cells for TKnull mutant viruses would be at the level of viral DNA replication (10). Thus, the investigators suggested that the expression of IE and E viral genes was linked to viral DNA replication. These observations led to the hypothesis that some replication of the viral genome preceded detectable levels of I⌭ and ⌭ gene expression and full progression into the lytic cycle. In contrast to the lytic replication cycle in cultured cell lines, where viral IE and E gene expression is independent of viral DNA replication, in the TG amplification of the viral genome was hypothesized to be required for optimum IE gene expression and progression into lytic replication.Supporting this hypothesis, Nichol et al. (14) demonstrated that the HSV replication cycle was prolonged in primary sympathetic neuronal cultures compared to Vero cells and that blocking viral DNA synthesis with acyclovir (ACV) resulted in reduced levels of IE and E gene expression, again in contrast to Vero cells. Thus, the progression of HSV lytic infection was indeed measurab...
Ethanol tolerance, a polygenic trait of the yeast Saccharomyces cerevisiae, is the primary factor determining industrial bioethanol productivity. Until now, genomic elements affecting ethanol tolerance have been mapped only at low resolution, hindering their identification. Here, we explore the genetic architecture of ethanol tolerance, in the F6 generation of an Advanced Intercrossed Line (AIL) mapping population between two phylogenetically distinct, but phenotypically similar, S. cerevisiae strains (a common laboratory strain and a wild strain isolated from nature). Under ethanol stress, 51 quantitative trait loci (QTLs) affecting growth and 96 QTLs affecting survival, most of them novel, were identified, with high resolution, in some cases to single genes, using a High-Resolution Mapping Package of methodologies that provided high power and high resolution. We confirmed our results experimentally by showing the effects of the novel mapped genes: MOG1, MGS1, and YJR154W. The mapped QTLs explained 34% of phenotypic variation for growth and 72% for survival. High statistical power provided by our analysis allowed detection of many loci with small, but mappable effects, uncovering a novel “quasi-infinitesimal” genetic architecture. These results are striking demonstration of tremendous amounts of hidden genetic variation exposed in crosses between phylogenetically separated strains with similar phenotypes; as opposed to the more common design where strains with distinct phenotypes are crossed. Our findings suggest that ethanol tolerance is under natural evolutionary fitness-selection for an optimum phenotype that would tend to eliminate alleles of large effect. The study provides a platform for development of superior ethanol-tolerant strains using genome editing or selection.
Adenosine to inosine (A-to-I) RNA editing, the most prevalent type of RNA editing in metazoans, is carried out by adenosine deaminases (ADARs) in double-stranded RNA regions. Several computational approaches have been recently developed to identify A-to-I RNA editing sites from sequencing data, each addressing a particular issue. Here, we present RNA Editing Sites Identification and Classification (RESIC), an efficient pipeline that combines several approaches for the detection and classification of RNA editing sites. The pipeline can be used for all organisms and can use any number of RNA-sequencing datasets as input. RESIC provides (1) the detection of editing sites in both repetitive and non-repetitive genomic regions; (2) the identification of hyper-edited regions; and (3) optional exclusion of polymorphism sites to increase reliability, based on DNA, and ADAR-mutant RNA sequencing datasets, or SNP databases. We demonstrate the utility of RESIC by applying it to human, successfully overlapping and extending the list of known putative editing sites. We further tested changes in the patterns of A-to-I RNA editing, and RNA abundance of ADAR enzymes, following SARS-CoV-2 infection in human cell lines. Our results suggest that upon SARS-CoV-2 infection, compared to mock, the number of hyper editing sites is increased, and in agreement, the activity of ADAR1, which catalyzes hyper-editing, is enhanced. These results imply the involvement of A-to-I RNA editing in conceiving the unpredicted phenotype of COVID-19 disease. RESIC code is open-source and is easily extendable.
Adenosine to inosine (A-to-I) RNA editing is a highly conserved regulatory process carried out by adenosine-deaminases (ADARs) on double-stranded RNA (dsRNAs). Although a considerable fraction of the transcriptome is edited, the function of most editing sites is unknown. Previous studies indicate changes in A-to-I RNA editing frequencies following exposure to several stress types. However, the overall effect of stress on the expression of ADAR targets is not fully understood. Here, we performed high-throughput RNA sequencing of wild-type and ADAR mutant Caenorhabditis elegans worms after heat-shock to analyze the effect of heat-shock stress on the expression pattern of genes. We found that ADAR regulation following heat-shock does not directly involve heat-shock related genes. Our analysis also revealed that long non-coding RNAs (lncRNAs) and pseudogenes, which have a tendency for secondary RNA structures, are enriched among upregulated genes following heat-shock in ADAR mutant worms. The same group of genes is downregulated in ADAR mutant worms under permissive conditions, which is likely, considering that A-to-I editing protects endogenous dsRNA from RNA-interference (RNAi). Therefore, temperature increases may destabilize dsRNA structures and protect them from RNAi degradation, despite the lack of ADAR function. These findings shed new light on the dynamics of gene expression under heat-shock in relation to ADAR function.
Adenosine to inosine (A-to-I) RNA editing is a highly conserved regulatory process carried out by adenosine-deaminases (ADARs) on dsRNAs. Although a considerable fraction of the transcriptome is edited, the function of most editing sites is unknown. Previous studies indicate changes in A-to-I RNA editing frequencies following exposure to several stress types. However, the overall effect of stress on the expression of ADAR targets is not fully understood. Here, we performed high-throughput RNA sequencing of wild-type and ADAR mutant C. elegans worms after heat-shock to analyze the effect of heat-shock stress on the expression pattern of genes. We found that ADAR regulation following heat-shock does not directly involve heat-shock related genes. Our analysis also revealed that lncRNAs and pseudogenes, which have a tendency for secondary RNA structures, are enriched among upregulated genes following heat-shock in ADAR mutant worms. The same group of genes is downregulated in ADAR mutant worms under permissive conditions, which is likely, considering that A-to-I editing protects endogenous dsRNA from RNA-interference (RNAi). Therefore, temperature increases may destabilize dsRNA structures and protect them from RNAi degradation, despite the lack of ADAR function. These findings shed new light on the dynamics of gene expression under heat-shock in relation to ADAR function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.