The p53 protein is mutated in about 50% of human cancers. Aside from losing the tumor-suppressive functions of the wild-type form, mutant p53 proteins often acquire inherent, novel oncogenic functions, a phenomenon termed mutant p53 gain-of-function (GOF). A growing body of evidence suggests that these pro-oncogenic functions of mutant p53 proteins are mediated by affecting the transcription of various genes, as well as by protein–protein interactions with transcription factors and other effectors. In the current review, we discuss the various GOF effects of mutant p53, and how it may serve as a central node in a network of genes and proteins, which, altogether, promote the tumorigenic process. Finally, we discuss mechanisms by which “Mother Nature” tries to abrogate the pro-oncogenic functions of mutant p53. Thus, we suggest that targeting mutant p53, via its reactivation to the wild-type form, may serve as a promising therapeutic strategy for many cancers that harbor mutant p53. Not only will this strategy abrogate mutant p53 GOF, but it will also restore WT p53 tumor-suppressive functions.
a b s t r a c tThe role of p53 as the ''guardian of the genome'' in differentiated somatic cells, triggering various biological processes, is well established. Recent studies in the stem cell field have highlighted a profound role of p53 in stem cell biology as well. These studies, combined with basic data obtained 20 years ago, provide insight into how p53 governs the quantity and quality of various stem cells, ensuring a sufficient repertoire of normal stem cells to enable proper development, tissue regeneration and a cancer free life. In this review we address the role of p53 in genomically stable embryonic stem cells, a unique predisposed cancer stem cell model and adult stem cells, its role in the generation of induced pluripotent stem cells, as well as its role as the barrier to cancer stem cell formation.
Regeneration and tumorigenesis share common molecular pathways, nevertheless the outcome of regeneration is life, whereas tumorigenesis leads to death. Although the process of regeneration is strictly controlled, malignant transformation is unrestrained. In this review, we discuss the involvement of TP53, the major tumor-suppressor gene, in the regeneration process. We point to the role of p53 as coordinator assuring that regeneration will not shift to carcinogenesis. The fluctuation in p53 activity during the regeneration process permits a tight control. On one hand, its inhibition at the initial stages allows massive proliferation, on the other its induction at advanced steps of regeneration is essential for preservation of robustness and fidelity of the regeneration process. A better understanding of the role of p53 in regulation of regeneration may open new opportunities for implementation of TP53-based therapies, currently available for cancer patients, in regenerative medicine.
The exposure of cells to DNA‐damaging agents leads to the accumulation of wild‐type p53 protein. Furthermore, overexpression of the wild‐type p53, mediated by transfection of p53‐coding cDNA, induced cells to undergo apoptosis or cell differentiation. In this study we found that the gamma‐irradiation that caused the accumulation of wild‐type p53 in 70Z/3 pre‐B cells induced, in addition to apoptosis, cell differentiation. This was manifested by the expression of the kappa light chain immunoglobulin gene that coincided with the accumulation of cells at the G2 phase. Overexpression of mutant p53 in 70Z/3 cells interferes with both differentiation and accumulation of cells at the G2 phase, as well as with apoptosis, which were induced by gamma‐irradiation. Furthermore, the increment in the wild‐type p53 protein level following gamma‐irradiation was disrupted in the mutant p53 overproducer‐derived cell lines. This suggests that mutant p53 may exert a dominant negative effect in all of these activities. Data presented here show that while p53‐induced apoptosis is associated with the G1 checkpoint, p53‐mediated differentiation, which may be an additional pathway to escape the fixation of genetic errors, may be associated with the G2 growth arrest phase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.