In this manuscript, we employ parallel batch stability and chromatographic screens in concert with linear and step gradient experiments to develop a high yield, HCP clearance anion exchange capture process for lentiviral vector (LVV) purification. An initial broad resin screen is carried out to determine anion exchange‐based resins that exhibit high recovery of LVV. LVV stability is then evaluated and conditions are established where the vector exhibits good stability, namely phosphate buffer at pH 6.5–7.5, with low to moderate salt concentrations. A subsequent high‐throughput batch screen is then carried out with a subset of resins selected from the first screen under stable conditions to identify optimal wash and elution steps to further improve product yield and protein clearance. Linear gradient experiments are also conducted in mini‐column format to refine the operating conditions and final step gradient processes are established that exhibit greater than 70% yield of infectious LVV while also achieving up to 2.89 log reduction values (LRV) of HCPs during the process. The large set of stability and chromatographic data provided in this work represent an important contribution to knowledge in the field about the chromatographic efficacy of a wide range of resins for LVV bioprocessing under stable conditions.
Affinity precipitation using stimulus-responsive biopolymers such as elastin-like polypeptides (ELPs) have been successfully employed for the purification of monoclonal antibodies. In the current work, we extend these studies to the development of an ELP-peptide fusion for the affinity precipitation of the therapeutically relevant small non-mAb biologic, AdP. A 12-mer affinity peptide ligand (P10) was identified by a primary phage biopanning followed by a secondary in-solution fluorescence polarization screen. Peptide P10 and AdP interacted with a K D of 19.5 µM. A fusion of P10 with ELP was then shown to be successful in selectively capturing the biologic from a crude mixture. While pH shifts alone were not sufficient for product elution, the use of pH in concert with fluid-phase modifiers such as NaCl, arginine, or ethylene glycol was effective. In particular, the use of pH 8.5 and an arginine concentration of 500 mM enabled >80% product recovery. The overall process performance evaluated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and reversed-phase ultra-performance liquid chromatography analyses indicated successful single-step purification of the biologic from an Escherichia coli lysate resulting in ∼90% purity and >80% recovery. These results demonstrate that phage display can be readily employed to identify a peptide ligand capable of successfully carrying out the purification of a non-antibody biological product using ELP-based affinity precipitation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.