The native lactose repressor from Escherichia coli (Lac Rep) and two single-point mutants, W220Y and W201Y, were investigated using low-temperature phosphorescence and optical detection of magnetic resonance (ODMR) spectroscopy. Emission from two tryptophan residues was evident in the phosphorescence spectrum of native Lac Rep at 77 K. Using the single-point mutants, the triplet-state properties of tryptophans 201 and 220 were obtained independently. Trp 220 was characterized as a partially solvent-exposed residue (0,0 band centered at 409.5 nm), while tryptophan 201 exhibited the properties of a buried residue (0,0 band centered at 413.5 nm). Both single-point mutant proteins experienced changes in tryptophan triplet-state properties as a result of binding either of two inducer sugars: isopropyl beta-D-thiogalactoside, a monosaccharide, or melibiose, a disaccharide. Putative singlet-singlet energy transfer from tryptophan 220 to tryptophan 201 was also investigated, but the quantitative results must be viewed with some caution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.