Determination of a minimal postmortem interval via age estimation of necrophagous diptera has been restricted to the juvenile stages and the time until emergence of the adult fly, i.e. up until 2–6 weeks depending on species and temperature. Age estimation of adult flies could extend this period by adding the age of the fly to the time needed for complete development. In this context pteridines are promising metabolites, as they accumulate in the eyes of flies with increasing age. We studied adults of the blow fly Lucilia sericata at constant temperatures of 16 °C and 25 °C up to an age of 25 days and estimated their pteridine levels by fluorescence spectroscopy. Age was given in accumulated degree days (ADD) across temperatures. Additionally, a mock case was set up to test the applicability of the method. Pteridine increases logarithmically with increasing ADD, but after 70–80 ADD the increase slows down and the curve approaches a maximum. Sex had a significant impact (p < 4.09 × 10−6) on pteridine fluorescence level, while body-size and head-width did not. The mock case demonstrated that a slight overestimation of the real age (in ADD) only occurred in two out of 30 samples. Age determination of L. sericata on the basis of pteridine levels seems to be limited to an age of about 70 ADD, but depending on the ambient temperature this could cover an extra amount of time of about 5–7 days after completion of the metamorphosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.