Mitochondria not only provide necessary energy for cells, but more importantly, they participate in the regulation of various biological functions and activities of cells. As one of the critical components of the body’s genome, mitochondrial genome (mtDNA) is the key to cell bioenergetics and genetics. However, since no protection of histones and a complete self-repair system, mtDNA is extremely prone to mutate. Human diseases caused by mtDNA mutations are only transmitted through the maternal line. The same phenotype can come from multiple mtDNA mutations, and the same mtDNA mutation can lead to multiple phenotypes. This is the major reason that makes the diagnosis and identification of mtDNA genetic diseases difficult. Meanwhile, mtDNA mutations may be the culprit involved in mediating the aging and tumorigenesis. Currently, no effective therapeutics for diseases caused by mtDNA mutations, but with the deepening of research and technological advancement, it is promising that breakthroughs in the diagnosis and treatment of mitochondrial-related diseases in the near future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.