BACKGROUND: We developed and implemented a perioperative guideline for obstructive sleep apnea (OSA), comprising a preoperative screening tool (BOSTN) and clinical management pathways. OSA was suspected with 2 or more of the following: body mass index ≥30 kg/m2, observed apnea, loud snoring, daytime tiredness, and neck circumference ≥16.5 inches in women or ≥ 17.5 inches in men. The primary objective of this study was to assess the association between high BOSTN scores and the requirement of invasive mechanical ventilation after surgery. METHODS: In this hospital registry study, 169,662 noncardiac surgical cases performed at Beth Israel Deaconess Medical Center (BIDMC), Boston, MA, between May 2008 and September 2017 were analyzed. We assessed the association between a high BOSTN Score (score ≥2) and the primary outcome of requirement of invasive mechanical ventilation within 7 days after surgery using multivariable logistic regression adjusted for patient-specific factors and case-specific surgical and anesthesiological confounders. Patients with a BOSTN Score ≥2 were assumed to have a high likelihood of suffering from OSA. Key secondary outcome was postoperative desaturation, defined as a peripheral oxygen saturation measurement <90% within 10 minutes of extubation. RESULTS: Invasive mechanical ventilation within 7 days of surgery was necessary in 3170 (2.3%) low-risk cases (BOSTN Score <2) and 664 (2.1%) high-risk cases (BOSTN Score ≥2). A score ≥2 was associated with significantly lower odds of requiring postoperative invasive ventilation (adjusted odds ratio [aOR], 0.89; 95% confidence interval [CI], 0.80–0.98; P = .017), but with an increased risk of postextubation desaturation (aOR, 1.34; 99.3% CI, 1.21–1.48; P < .001). Patients with a score ≥2 were hospitalized for an average of 3.71 days after surgery, compared to 4.27 days with a score <2 (adjusted incidence rate ratio [aIRR], 0.87; 99.3% CI, 0.84–0.91; P < .001). CONCLUSIONS: Patients at high risk of OSA required postoperative mechanical ventilation less frequently, had higher odds of postoperative desaturation, and were hospitalized for shorter periods of time.
Background Preclinical studies suggest that ketamine stimulates breathing. We investigated whether adding a ketamine infusion at low and high doses to propofol sedation improves inspiratory flow and enhances sedation in spontaneously breathing critically ill patients. Methods In this prospective interventional study, twelve intubated, spontaneously breathing patients received ketamine infusions at 5 mcg/kg/min, followed by 10 mcg/kg/min for 1 h each. Airway flow, pressure, and esophageal pressure were recorded during a spontaneous breathing trial (SBT) at baseline, and during the SBT conducted at the end of each ketamine infusion regimen. SBT consisted of one-minute breathing with zero end-expiratory pressure and no pressure support. Changes in inspiratory flow at the pre-specified time points were assessed as the primary outcome. Ketamine-induced change in beta-gamma electroencephalogram power was the key secondary endpoint. We also analyzed changes in other ventilatory parameters respiratory timing, and resistive and elastic inspiratory work of breathing. Results Ketamine infusion of 5 and 10 mcg/kg/min increased inspiratory flow (median, IQR) from 0.36 (0.29-0.46) L/s at baseline to 0.47 (0.32-0.57) L/s and 0.44 (0.33-0.58) L/s, respectively ( p = .013). Resistive work of breathing decreased from 0.4 (0.1-0.6) J/l at baseline to 0.2 (0.1-0.3) J/l after ketamine 10 mcg/kg/min ( p = .042), while elastic work of breathing remained unchanged. Electroencephalogram beta-gamma power (19-44 Hz) increased compared to baseline ( p < .01). Conclusions In intubated, spontaneously breathing patients receiving a constant rate of propofol, ketamine increased inspiratory flow, reduced inspiratory work of breathing, and was associated with an “activated” electroencephalographic pattern. These characteristics might facilitate weaning from mechanical ventilation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.