A numerical simulation method is employed to investigate the effect of the steady multiple plasma body forces on the flow field of stalled NACA 0015 airfoil. The plasma body forces created by multiple Dielectric Barrier Discharge (DBD) actuators are modeled with a phenomenological plasma method coupled with 2dimensional compressible turbulent flow equations. The body force distribution is assumed to vary linearly in the triangular region around the actuator. The equations are solved using adual-timeimplicit finite volume method on unstructured grids. In this paper, the responses of the separated flow field to the effects of single and multiple DBD actuators over the broad range of angles of attack (9 − 30) are studied. The effects of the actuators positions on the flow field are also investigated. It is shown that the DBD have a significant effect on flow separation control in low Reynolds number aerodynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.