The potential use of fluorescent molecular probes to measure ions and biomolecules has contributed incessantly to the understanding of chemical and biological systems. The approach has many advantages such as high sensitivity, simplicity and non-destructive cellular imaging that offer visible information about the targeted species. In this article, our objective is to discuss fluorescent probes that have sensing applications within the mitochondrial environment. Mitochondria are cellular organelles which are well known for their unique physiological functions and have been found to be associated with various diseases and disorders. It is therefore, important to develop new tools and tactics that can provide useful information concerning the mitochondrial environment which in turn is essential to understand its biophysical functioning and related diseases.
New pentaquinone derivatives 5 and 8 having rhodamine moieties have been designed and synthesized that undergo through-bond energy transfer (TBET) in the presence of Hg(2+) ions among the various cations (Cu(2+), Pb(2+), Fe(2+), Fe(3+), Zn(2+), Ni(2+), Cd(2+), Co(2+), Ag(+), Ba(2+), Mg(2+), K(+), Na(+), and Li(+)) tested in mixed aqueous media.
A pentaquinone based compound 3a has been synthesized which exhibits pronounced fluorescence enhancement in the presence of Zn(2+) ions under a F(-) triggered synergistic effect. Derivative 3a also behaves as a molecular keypad lock with sequential chemical inputs of Zn(2+) and F(-) ions.
A pentaquinone based compound 3a has been synthesized which undergoes significant fluorescence enhancement in the presence of Zn(2+) ions with a detection limit up to nanomolar range in THF. Further, the zinc ensemble of 3a is evaluated for its anti-oxidizing property which is better than commercially available antioxidants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.