Recent work has demonstrated that some actively transcribed genes closely associate with nuclear pore complexes (NPC) at the nuclear periphery. The Saccharomyces cerevisiae Mlp1 and Mlp2 proteins are components of the inner nuclear basket of the nuclear pore that mediate interactions with these active genes. To investigate the physical link between the NPC and active loci, we identified proteins that interact with the carboxyl-terminal globular domain of Mlp1 by tandem affinity purification coupled with mass spectrometry. This analysis led to the identification of several components of the Spt-Ada-Gcn5-acetyltransferase (SAGA) histone acetyltransferase complex, Gcn5, Ada2, and Spt7. We utilized co-immunoprecipitation and in vitro binding assays to confirm the interaction between the Mlp proteins and SAGA components. Chromatin immunoprecipitation experiments revealed that Mlp1 and SAGA components associate with the same region of the GAL promoters. Critically, this Mlp-promoter interaction depends on the integrity of the SAGA complex. These results identify a physical association between SAGA and the NPC, and support previous results that relied upon visualization of GAL loci at the nuclear periphery by microscopy (Cabal, G. G. Genovesio, A., Rodriguez-Navarro, S., Zimmer, C., Gadal, O., Lesne, A., Buc, H., Feuerbach-Fournier, F., Olivo-Marin, J.-C., Hurt, E. C., and Nehrbass, U. (2006) Nature 441, 770 -773). We propose that a physical interaction between nuclear pore components and the SAGA complex can link the actively transcribed GAL genes to the nuclear pore.
Epidemiologic studies have implicated estrogenic exposure as well as human papilloma virus (HPV) infection in cervical carcinogenesis, and some studies have suggested that estrogen and HPV may play synergistic roles in cervical tumorigenesis. In this study, we report a novel finding that f35% of cervical carcinomas tested (n = 19) express aromatase, the enzyme responsible for converting androgen to estrogen, the ratelimiting and final step in estrogen biosynthesis. On the other hand, no aromatase expression was detected in precancerous (n = 42) or normal cervical (n = 17) tissue samples. Increased aromatase was associated with increases in estrogen receptors (ER-A and ER-B) and a decrease in progesterone receptor levels, suggesting that in situ estrogen signaling via ER may be involved in tumor growth. Stable overexpression of aromatase in HPV + cervical cancer cells resulted in increased cellular proliferation, anchorage-independent growth, and ER expression and activity. In contrast, little change in ER was observed in HPV À cells. Steroid hormone receptor expression observed in vitro paralleled that seen in cervical carcinomas expressing aromatase. Aromatase overexpression also induced the expression of cyclin D1, proliferating cell nuclear antigen, and the HPV oncogenes, E6 and E7. Furthermore, the data underscores the importance of steroid receptor (estrogen and progesterone receptors) regulation in cervical carcinogenesis. To our knowledge, this is the first report demonstrating the induction of aromatase expression in cervical carcinomas, and opens the possibility that aromatase inhibitors may be potential therapeutic agents in cervical carcinomas expressing aromatase. (Cancer Res 2005; 65(23): 11164-73)
A number of recent studies have suggested that the colony-stimulating factor (CSF-1) and its receptor c-fms may be involved in the development of mammary glands during lactation and breast cancer. To study the role of CSF-1 or its receptor in initiation of mammary tumorigenesis, we have generated two independent lines of transgenic mice that overexpress either CSF-1 or c-fms under the control of the mouse mammary tumor virus promoter. Mammary glands of the virgin CSF-1 transgenic mice show increased ductal branching, hyperplasia, dysplasia, and other preneoplastic changes, which are indicative of increased cellular proliferation. Similar changes were also evident in the mammary glands of the c-fms transgenic mice. These changes became more prominent with age and resulted in mammary tumor formation. Moreover, secondary events like dimethylbenz(a)anthracene treatment accelerated mammary tumor formation in these mice. Although the expression of estrogen receptor ␣ was not significantly changed in either of the transgenic mouse strains, progesterone receptor levels was higher in both transgenic lines as compared with the nontransgenic littermates. Expression of G1 cyclins was prominently increased in the mammary glands of both the CSF-1 and c-fms transgenic lines, suggesting increased cell cycle progression in these strains. In addition, the proliferation marker proliferating cell nuclear antigen (PCNA) and the mitogen-responsive transcription factor c-jun were also increased as compared with the nontransgenic controls. These findings, along with the histological data, support the hypothesis that CSF-1 and its receptor are involved in the etiology of breast cancer.
Drug resistance, in particular multidrug resistance, is a serious problem that impedes the effectiveness of chemotherapy. Multidrug resistance results mainly from an enhanced efflux of drugs by drug pumps located on the cell membrane such as P-glycoprotein. In the study reported here we showed that EM012, a microtubule-interfering agent, is a weak substrate for P-glycoprotein and inhibited the proliferation of A2780/ADR human ovarian cancer cells, which possess multidrug resistance due to P-glycoprotein overexpression. A2780/ADR cells treated with EM012 exhibited pronounced mitotic arrest, developed large multilobed nuclei, and eventually died through the initiation of apoptosis. Intraperitoneal treatment of A2780/ADR xenograft tumors in athymic nude mice with EM012 significantly inhibited tumor progression through triggering apoptosis and conferred an apparent survival advantage. Furthermore, EM012 treatment did not cause detectable toxicity to normal tissues. These findings suggest that EM012 may serve as a novel chemotherapeutic agent for the treatment of multidrug-resistant human ovarian cancer.
Objective: We had previously shown that long-acting cabotegravir (CAB-LA) injections fully protected macaques from vaginal simian HIV (SHIV) infection. Here, we reassessed CAB-LA efficacy in the presence of depot medroxyprogesterone acetate and multiple sexually transmitted infections (STIs) that are known to increase HIV susceptibility in women. Design: Two macaque models of increasing vaginal STI severity were used for efficacy assessment. Methods: The first study ( n = 11) used a double STI model that had repeated exposures to two vaginal STI, Chlamydia trachomatis and Trichomonas vaginalis . Six animals were CAB-LA treated and five were controls. The second study ( n = 9) included a triple STI model with repeated exposures to C. trachomatis , T. vaginalis and syphilis, and the contraceptive, depot medroxyprogesterone acetate (DMPA). Six animals were CAB-LA treated and three were controls. All animals received up to 14 vaginal SHIV challenges. A survival analysis was performed to compare the number of SHIV challenges to infection in the drug-treated group compared with untreated controls over time. Results: All six CAB-LA treated animals in both models, the double STI or the triple STI-DMPA model, remained protected after 14 SHIV vaginal challenges, while the untreated animals became SHIV-infected after a median of two challenges (log-rank P < 0.001) or one challenge (log-rank P = 0.002), respectively. Both models recapitulated human STI disease, with vaginal discharge, ulcers, and seroconversion. Conclusion: In these high and sustained susceptibility models spanning more than 3 months, CAB-LA maintained complete efficacy, demonstrating robustness of the CAB-LA dose used in clinical trials, and suggesting its insensitivity to multiple STIs and DMPA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.