Nitriles unveil widespread applications in pharmaceuticals, agrochemicals, textiles, rubber, polymers, and constitute a significant intermediate in several organic transformations, necessitating the design of simple and environmentally benign pathways for their synthesis. Over the recent years, electro‐organic reactions have found widespread attention in developing effective and selective organic synthesis. They possess several advantages: high atom economy, selectivity, minimal waste production, and shorter routes to multistep traditional organic reactions. The development of novel strategies for greener and sustainable electro‐organic synthesis of nitriles is therefore commendable. This review focuses on analyzing various methods and strategies used in the electrochemical synthesis of nitriles using phase transfer catalyst, N‐oxoammonium salts mediated electrocatalysis, iodine‐mediated electrocatalysis, and anodic oxidations of aldoximes. In addition, the recent trends including the synthesis of nitriles via C−H cyanation, domino oxidation, bio electrocatalysis, and metal‐ligand cooperative synthesis have been discussed.
Pi-MnO2-rGO-CFP electrode was developed through a concurrent deposition of Pi-MnO2 and reduced graphene oxide (rGO) on carbon fiber paper (CFP). Cyclic voltammetry and electrochemical impedance studies were applied for the electrochemical characterization of the electrode. The electro catalytic activity of the modified electrode was improved by the increased synergistic characteristics of the CFP and electrochemically deposited rGO-Pi-MnO2 composite. The performance of the modified electrode was remarkable due to its lowest charge transfer resistance (Rct), and highest surface area offering more active sites and quicker electron transport kinetics. X-ray diffraction spectroscopy, Raman spectroscopy, scanning electron microscopy, transmission electron microscopy, and optical profilometry were employed to study the physicochemical properties. Furthermore, the modified electrode was availed to oxidize piperonyl alcohol mediated by 4-acetamido-2,2,6,6-tetramethylpiperidine-1-oxyl (4-acetamido TEMPO or 4-ACT). The product obtained was purified and characterized by 1HNMR. The turnover frequency of 4-ACT was studied at different concentrations of the reactant, and the reaction parameters were also optimized using statistical tool design of experiment. This methodology is demonstrated to be economical, environmentally benign, and highly efficient in obtaining piperonal as it is carried out under milder reaction conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.