Dolphins of the genus Stenella occur in pelagic waters of both tropical and warmtemperate oceans. Three species, the Atlantic spotted dolphin (Stenella frontalis), the pantropical spotted dolphin (S. attenuata), and the spinner dolphin (S. longirostris) are abundant worldwide, but in the Caribbean Basin they have been poorly studied and information on their distribution patterns is scarce. Specifically, in Colombia's remote Seaflower Biosphere Reserve (SFBR) S. attenuata has been reported occasionally, but S. frontalis and S. longirostris have never been recorded before. To address this information gap, an ecological niche modeling approach was used to determine the potential distribution patterns of these three dolphin species in the region. Records of these species for the Caribbean Basin were compiled, including both published and unpublished data. Environmental information, including bathymetry, bathymetric slope, distance to shore, sea surface temperature, sea surface salinity, and chlorophylla concentration was gathered from public databases (MARSPEC and Bio-ORACLE) in raster format. The maximum entropy algorithm (Maxent) for modeling species' geographic distributions with presence-only data was used. After filtering the data, 210 records of S. attenuata, 204 of S. frontalis, and 80 of S. longirostris were used to run models. The best configuration for each model was chosen based on the AICc criterion. For all three species, the final ecological niche models returned AUC
The Atlantic spotted dolphin (Stenella frontalis) is endemic to tropical, subtropical, and warm temperate waters of the Atlantic Ocean. Throughout its distribution, both geographic distance and environmental variation may contribute to population structure of the species. In this study we follow a seascape genetics approach to investigate population differentiation of Atlantic spotted dolphins based on a large worldwide dataset and the relationship with marine environmental variables. The results revealed that the Atlantic spotted dolphin exhibits population genetic structure across its distribution based on mitochondrial DNA control region (mtDNA-CR) data. Analyses based on the contemporary landscape suggested, at both the individual and population-level, that the population genetic structure is consistent with the isolation-by-distance model. However, because geography and environmental matrices were correlated, and because in some, but not all analyses, we found a significant effect for the environment, we cannot rule out the addition contribution of environmental factors in structuring genetic variation. Future analyses based on nuclear data are needed to evaluate whether local processes, such as social structure and some level of philopatry within populations, may be contributing to the associations among genetic structure, geographic, and environmental distance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.