a b s t r a c tTo the best of our knowledge, there are no constitutive models that properly describe experimental data on anisotropy of the Mullins effect. In this paper, such a micro-mechanical model is proposed for carbon black filled rubbers. The model describes the deformation induced anisotropy and permanent set as well. Damage of the polymer-filler network is considered as a consequence of chain sliding on or debonding from aggregates. In contrast to previous works on anisotropy of the Mullins effect we do not introduce any phenomenological damage function. Damage in different directions is governed by a network evolution concept which describes the changes in the inter-aggregate distribution of polymer chains. The model includes a few number of physically motivated material constants and demonstrates good agreement with own experimental data on subsequent uniaxial tensions in two orthogonal directions.
A Taylor power series is a powerful mathematical tool, which can be used to express an inverse function especially if it is given in an implicit form. This is for example the case for the inverse Langevin function, which is an indispensable ingredient of full-network rubber models. In the present paper, we propose a simple recurrence procedure for calculating Taylor series coefficients of the inverse function. This procedure is based on the Taylor series expansion of the original function and results in a simple recurrence formula. This formula is further applied to the inverse Langevin function. The convergence radius of the resulting series is evaluated. Within this convergence radius the obtained approximation of the inverse Langevin function demonstrates better agreement with the exact solution in comparison to different Padé approximants.
The large strain behavior of filled rubbers is characterized by the strong Mullins effect, permanent set, and induced anisotropy. Strain controlled cyclic tests also exhibit a pronounced hysteresis as a strain rate independent phenomenon. Prediction of these inelastic features in elastomers is an important challenge with immense industrial and technological relevance. In the present paper, a micromechanical model is proposed to describe the inelastic features in the behavior of filled elastomers. To this end, the previously developed network decomposition concept [Dargazany and Itskov, Int. J. Solids Struct. 46, 2967 (2009)] is extended and an additional network (CP network) is added to the classical elastic rubber (CC) and polymer-filler (PP) networks. The new network is considered to account for the damage of filler aggregates in the cyclic deformation as the source of hysteresis energy loss. The accuracy of the resulting model is evaluated in comparison to a new set of experimental data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.