Background: Many lines of evidence suggest that accumulation of aggregated alpha-synuclein (αSYN) in the Parkinson's disease (PD) brain causes infiltration of T cells. However, in which ways the stationary brain cells interact with the T cells remain elusive. Here, we identify astrocytes as potential antigen-presenting cells capable of activating T cells in the PD brain. Astrocytes are a major component of the nervous system, and accumulating data indicate that astrocytes can play a central role during PD progression. Methods: To investigate the role of astrocytes in antigen presentation and T-cell activation in the PD brain, we analyzed post mortem brain tissue from PD patients and controls. Moreover, we studied the capacity of cultured human astrocytes and adult human microglia to act as professional antigen-presenting cells following exposure to preformed αSYN fibrils. Results: Our analysis of post mortem brain tissue demonstrated that PD patients express high levels of MHC-II, which correlated with the load of pathological, phosphorylated αSYN. Interestingly, a very high proportion of the MHC-II co-localized with astrocytic markers. Importantly, we found both perivascular and infiltrated CD4 + T cells to be surrounded by MHC-II expressing astrocytes, confirming an astrocyte T cell cross-talk in the PD brain. Moreover, we showed that αSYN accumulation in cultured human astrocytes triggered surface expression of co-stimulatory molecules critical for T-cell activation, while cultured human microglia displayed very poor antigen presentation capacity. Notably, intercellular transfer of αSYN/MHC-II deposits occurred between astrocytes via tunneling nanotubes, indicating spreading of inflammation in addition to toxic protein aggregates. Conclusions: In conclusion, our data from histology and cell culture studies suggest an important role for astrocytes in antigen presentation and T-cell activation in the PD brain, highlighting astrocytes as a promising therapeutic target in the context of chronic inflammation.
The polarized morphology of neurons allows the transmission of neuronal signals along long, slender axons over extended distances. The dysfunction and degeneration of axons are important hallmarks of many neurological disorders and traumas ranging from spinal cord injury to neurodegenerative diseases such as Alzheimer's disease. Thus, targeted research on axons is of great importance for improving the understanding of central nervous system (CNS) diseases and developing treatments for these devastating conditions, many of which lack disease-alleviating or disease-preventing therapies. [1,2] Human pluripotent stem cell (hPSC)-derived neural cells hold great promise for in vitro disease modeling and drug discovery for CNS diseases. [3,4] hPSCs provide an unlimited cell source for producing several types of neurons, and induced pluripotent stem cell (iPSC) technology enables the generation of patient-derived neurons that can recapitulate disease characteristics in vitro. [5,6] hPSC-based models have been used to study CNS diseases associated with axonal dysfunction and degeneration. [7][8][9] However, the full potential of in vitro modeling requires combining hPSC biology with state-of-the-art engineering technologies.Axonal research has been remarkably accelerated by the development of engineered in vitro devices that guide the organization of neurons, allowing the isolation of the axonal microenvironment. These compartmentalized devices enable precise spatial control, for example, targeted monitoring, measurement, and manipulation of axons, which are unfeasible or difficult to perform with conventional in vitro culture systems or in vivo. [10][11][12] The first devices used for neuron compartmentalization were Campenot chambers, which use a Teflon ring for the separation of neuronal somas and axons. [13][14][15] These were followed by microfluidic polydimethylsiloxane (PDMS)based devices, which currently represent the most common device type owing to their ease of fabrication and possibility of producing complex and highly controllable devices. [10,11,[16][17][18][19] Axonal isolation in PDMS microfluidic devices is based on microtunnels whose dimensions allow the passage of axons Axonal dysfunction and degeneration are important pathological features of central nervous system (CNS) diseases and traumas, such as Alzheimer's disease, traumatic brain injury, ischemic stroke and spinal cord injury. Engineered microfluidic chips combined with human pluripotent stem cell (hPSC)-derived neurons provide valuable tools for targeted in vitro research on axons to improve understanding of disease mechanisms and enhance drug development. Here, a polydimethylsiloxane (PDMS) microfluidic chip integrated with a light patterned substrate is utilized to achieve both isolated and unidirectional axonal growth of hPSC-derived neurons. The isolation of axons from somas and dendrites and robust axonal outgrowth to adjacent, axonal compartment, is achieved by optimized cross-sectional area and length of PDMS microtunnels in the microflu...
To determine the frequency of mutations known to cause autosomal dominant Parkinson disease (PD) in a series with more than 10% of Sweden's estimated number of PD patients. Methods: The Swedish Parkinson Disease Genetics Network was formed as a national multicenter consortium of clinical researchers who together have access to DNA from a total of 2,206 PD patients; 85.4% were from population-based studies. Samples were analyzed centrally for known pathogenic mutations in SNCA (duplications/triplications, p.Ala30Pro, p.Ala53Thr) and LRRK2 (p.Asn1437His, p.Arg1441His, p.Tyr1699Cys, p.Gly2019Ser, p.Ile2020Thr). We compared the frequency of these mutations in Swedish patients with published PD series and the gnomAD database. Results: A family history of PD in first-and/or second-degree relatives was reported by 21.6% of participants. Twelve patients (0.54%) carried LRRK2 p.(Gly2019Ser) mutations, one patient (0.045%) an SNCA duplication. The frequency of LRRK2 p.(Gly2019Ser) carriers was 0.11% in a matched Swedish control cohort and a similar 0.098% in total gnomAD, but there was a marked difference between ethnicities in gnomAD, with 42-fold higher frequency among Ashkenazi Jews than all others combined. Conclusions: In relative terms, the LRRK2 p.(Gly2019Ser) variant is the most frequent mutation among Swedish or international PD patients, and in gnomAD. SNCA duplications were the second most common of the mutations examined. In absolute terms, however, these known pathogenic variants in dominant PD genes are generally very rare and can only explain a minute fraction of familial aggregation of PD. Additional genetic and environmental mechanisms may explain the frequent co-occurrence of PD in close relatives.
Microelectrode array (MEA) is a tool used for recording bioelectric signals from electrically active cells in vitro. In this paper, ion beam assisted electron beam deposition (IBAD) has been used for depositing indium tin oxide (ITO) and titanium nitride (TiN) thin films which are applied as transparent track and electrode materials in MEAs. In the first version, both tracks and electrodes were made of ITO to guarantee full transparency and thus optimal imaging capability. In the second version, very thin (20 nm) ITO electrodes were coated with a thin (40 nm) TiN layer to decrease the impedance of Ø30 µm electrodes to one third (1200 kΩ → 320 kΩ) while maintaining (partial) transparency. The third version was also composed of transparent ITO tracks, but the measurement properties were optimized by using thick (200 nm) opaque TiN electrodes. In addition to the impedance, the optical transmission and electric noise levels of all three versions were characterized and the functionality of the MEAs was successfully demonstrated using human pluripotent stem cell-derived neuronal cells. To understand more thoroughly the factors contributing to the impedance, MEAs with higher IBAD ITO thickness as well as commercial sputter-deposited and highly conductive ITO were fabricated for comparison. Even if the sheet-resistance of our IBAD ITO thin films is very high compared to the sputtered one, the impedances of the MEAs of each ITO grade were found to be practically equal (e.g., 300–370 kΩ for Ø30 µm electrodes with 40 nm TiN coating). This implies that the increased resistance of the tracks, either caused by lower thickness or lower conductivity, has hardly any contribution to the impedance of the MEA electrodes. The impedance is almost completely defined by the double-layer interface between the electrode top layer and the medium including cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.