Tobacco mosaic virus (TMV) is a widespread plant virus from the genus Tobamovirus that affects tobacco and tomato plants causing a pathology characterised by cell breakage and disorganisation in plant leaves and fruits. In this study we undertook a proteomic approach to investigate the molecular and biochemical mechanisms potentially involved in tomato fruit defence against the viral infection. The comparison of 2-D gels from control and TMV-infected but asymptomatic tomato fruits revealed changes in several proteins. The differential expression of peptidases, endoglucanase, chitinase and proteins participating in the ascorbate-glutathione cycle in infected fruits suggests that pathogenesis-related proteins and antioxidant enzymes may play a role in the protection against TMV infection. TMV coat protein appeared as a prominent spot in 2-D gels from TMV-infected asymptomatic fruits. A Triton X-114 phase-partitioning step of tomato protein extracts favoured the solubilisation of TMV coat protein and the enrichment of two aminopeptidases not present in control fruits. PMF and MS/MS data of the 2-D gel-isolated TMV coat protein is proposed as a powerful analysis method for the simultaneous tobamovirus detection, species determination and strain differentiation in virus-infected fruit commodities.
Blossom-end rot (BER) is a physiopathy that affects tomato fruits causing disorganisation, cell breakage and darkening of the tissues. In this study we describe a tomato fruit protein extraction protocol that includes polyvinyl polypyrrolidone, ascorbic acid and protease inhibitors to promote depletion of phenolics and to avoid protein degradation. The temperature-induced phase separation of plant extracts with nonionic detergent Triton X-114 favours the solubilisation of partially-hydrophobic species in the low-detergent upper phase, making them suitable for further analysis using two-dimensional gel electrophoresis. The analysis of two-dimensional images revealed differences in number and expression levels of several proteins from the control and BER-affected tomato fruits. Although the appearance of BER in tomato is primarily attributed to a lack of calcium supply to fruits, very little is known about the molecular and biochemical mechanisms involved. The identification of differential proteins from affected fruits with matrix-assisted laser desorption/ionisation-time of flight and peptide mass fingerprinting analysis revealed the induction of proteins participating in antioxidant processes (ascorbate-glutathione cycle) and the pentose phosphate pathway. We suggest that these two biochemical pathways, acting as reactive oxygen species scavengers in BER-affected fruits, restrain the spread of the blackening to the whole fruit.
Discovery-based proteomics studies have an important role in the understanding of the biochemical processes that occur during grape berry ripening. The ripening process is relevant in determining grape berry quality. For a proteome analysis of grape berry ripening, Kambiranda et al. (2018) applied a label-free mass spectrometry-based quantitative approach. The authors reported the identification of proteins associated with the production flavor, aroma and ethylene production. Despite the valuable contribution of discovery-based proteomics studies, the picture is still incomplete. Future efforts in gaining proteome coverage would benefit the identification of proteins associated with grape berry quality traits.
When the effect of calcium on the oxidation of linoleic acid by potato tuber 5-lipoxygenase (LOX) was investigated, it was seen to promote the enzyme's activity at pH values higher than the optimum pH of 6.3, resulting in an enzyme activation at alkaline pH. Kinetic analysis of calcium activation at different pH values revealed that the cation abolished the inhibition by high substrate concentration, which occurs in the absence of Ca(2+), thus leading to activation at high substrate concentration. Studies were conducted to investigate the influence of Ca(2+) on the physicochemical nature of the substrate and its effect on the LOX activity expression. It was concluded that the aggregation mode rather than the aggregation state of linoleic acid is responsible for potato 5-LOX changes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.