A number of methods have been developed for modeling the evolution of a quantitative trait on a phylogeny. These methods have received renewed interest in the context of genome-wide studies of gene expression, in which the expression levels of many genes can be modeled as quantitative traits. We here develop a new method for joint analyses of quantitative traits within- and between species, the Expression Variance and Evolution (EVE) model. The model parameterizes the ratio of population to evolutionary expression variance, facilitating a wide variety of analyses, including a test for lineage-specific shifts in expression level, and a phylogenetic ANOVA that can detect genes with increased or decreased ratios of expression divergence to diversity, analogous to the famous Hudson Kreitman Aguadé (HKA) test used to detect selection at the DNA level. We use simulations to explore the properties of these tests under a variety of circumstances and show that the phylogenetic ANOVA is more accurate than the standard ANOVA (no accounting for phylogeny) sometimes used in transcriptomics. We then apply the EVE model to a mammalian phylogeny of 15 species typed for expression levels in liver tissue. We identify genes with high expression divergence between species as candidates for expression level adaptation, and genes with high expression diversity within species as candidates for expression level conservation and/or plasticity. Using the test for lineage-specific expression shifts, we identify several candidate genes for expression level adaptation on the catarrhine and human lineages, including genes putatively related to dietary changes in humans. We compare these results to those reported previously using a model which ignores expression variance within species, uncovering important differences in performance. We demonstrate the necessity for a phylogenetic model in comparative expression studies and show the utility of the EVE model to detect expression divergence, diversity, and branch-specific shifts.
Much of the phenotypic variation observed between even closely related species may be driven by differences in gene expression levels. The current availability of reliable techniques like RNA-Seq, which can quantify expression levels across species, has enabled comparative studies. Ornstein-Uhlenbeck (OU) processes have been proposed to model gene expression evolution as they model both random drift and stabilizing selection and can be extended to model changes in selection regimes. The OU models provide a statistical framework that allows comparisons of specific hypotheses of selective regimes, including random drift, constrained drift, and expression level shifts. In this way, inferences may be made about the mode of selection acting on the expression level of a gene. We augment this model to include within-species expression variance, allowing for modeling of nonevolutionary expression variance that could be caused by individual genetic, environmental, or technical variation. Through simulations, we explore the reliability of parameter estimates and the extent to which different selective regimes can be distinguished using phylogenies of varying size using both the typical OU model and our extended model. We find that if individual variation is not accounted for, nonevolutionary expression variation is often mistaken for strong stabilizing selection. The methods presented in this article are increasingly relevant as comparative expression data becomes more available and researchers turn to expression as a primary evolving phenotype.
Coevolving interacting genes undergo complementary mutations to maintain their interaction. Distinct combinations of alleles in coevolving genes interact differently, conferring varying degrees of fitness. If this fitness differential is adequately large, the resulting selection for allele matching could maintain allelic association, even between physically unlinked loci. Allelic association is often observed in a population with the use of gametic linkage disequilibrium. However, because the coevolving genes are not necessarily in physical linkage, this is not an appropriate measure of coevolution-induced allelic association. Instead, we propose using both composite linkage disequilibrium (CLD) and a measure of association between genotypes, which we call genotype association (GA). Using a simple selective model, we simulated loci and calculated power for tests of CLD and GA, showing that the tests can detect the allelic association expected under realistic selective pressure. We apply CLD and GA tests to the polymorphic, physically unlinked, and putatively coevolving human gamete-recognition genes ZP3 and ZP3R. We observe unusual allelic association, not attributable to population structure, between ZP3 and ZP3R. This study shows that selection for allele matching can drive allelic association between unlinked loci in a contemporary human population, and that selection can be detected with the use of CLD and GA tests. The observation of this selection is surprising, but reasonable in the highly selected system of fertilization. If confirmed, this sort of selection provides an exception to the paradigm of chromosomal independent assortment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.