If osmotic stress and reduced seawater tolerance are predisposing factors for infectious pancreatic necrosis (IPN) outbreaks in farmed Atlantic salmon, increased survival by enhancing access to energy would be expected. The aim of the present study was, therefore, to increase energy access in 1-year old Atlantic salmon after sea transfer by increasing the level of dietary fat, by exchanging some of the dietary oil with more easily oxidized medium chain triacylglycerols, or by dietary supplementation of potentially energy enhancing additives such as clofibrate and tetradecylthioacetic acid (TTA). A natural outbreak of IPN occurred 8 weeks after sea transfer, and a significant dietary effect explaining 76% of the variation in mortality was observed. Relative percentage survival for the fish fed TTA in sea water was 70% when compared with the unsupplemented control, reducing mortality from 7.8 to 2.3%. Muscle fat content and plasma chloride were related to IPN mortality, suggesting that reduced hypoosmoregulatory capacity might be a predisposing factor to the onset of an IPN outbreak. Based on the observation of a threefold increase in white muscle mitochondrial fatty acid oxidizing activity by TTA, it is suggested that TTA has resulted in a re-allocation of dietary fatty acids from storage to energy producing oxidation.
Heart and skeletal muscle inflammation (HSMI) is a disease causing considerable mortality in farmed Atlantic salmon. We have previously reported that pre-feeding of tetradecylthioacetic acid (TTA) reduces the mortality during a natural outbreak of HSMI. In the present paper we show that in the cardiac ventricle, during HSMI infection, pre-feeding TTA increases the expression of the immune genes: TNFα, VCAM-1, IgM and CD8α. We also show that TTA increases the cardiosomatic index potentially by elevating cardiomyogenesis through activation of the cardiac transcription factors MEF2C and Nkx2.5. Using the recently published genomic sequence of a HSMI associated piscine reovirus (PRV), we could show that the PRV levels have no confounding effects on the mRNA expression of the investigated genes. The results suggest that TTA induced cardiac growth, together with an elevated cardiac recruitment of immune cells, which might lead to increased robustness during HSMI infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.