The radical S-adenosylmethionine
(SAM) superfamily of enzymes catalyzes
an amazingly diverse variety of reactions ranging from simple hydrogen
abstraction to complicated multistep rearrangements and insertions.
The reactions they catalyze are important for a broad range of biological
functions, including cofactor and natural product biosynthesis, DNA
repair, and tRNA modification. Generally conserved features of the
radical SAM superfamily include a CX3CX2C motif
that binds an [Fe4S4] cluster essential for
the reductive cleavage of SAM. Here, we review recent advances in
our understanding of the structure and mechanisms of these enzymes
that, in some cases, have overturned widely accepted mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.