Extraction of viral RNA and the storage of sample material are extremely important factors in the detection and whole genome sequencing (WGS) of viral pathogens. Although PCR-based detection methods focus on small amplicons, viral WGS applications require RNA of high quality and integrity for adequate sequence coverage and depth. This study examined the fitness of one manual and four automated RNA extraction platforms commonly used in diagnostic laboratories for use in metagenomic sequencing, how the practice of storing sample material in Qiagen buffer AVL before extraction affected the integrity of viral RNA and its suitability for use in amplicon-based WGS methods, and how the addition of Triton X-100 to buffer AVL affected the capability of the extraction platforms and the integrity of viral RNA in stored samples. This study found that the EZ1 platform gave the best performance of the automated platforms and gave comparable results to the frequently used manual Qiagen extraction protocol when extracted viral RNA was used in metagenomics sequencing. To maintain high levels of viral RNA integrity suitable for amplicon-based WGS, nucleic acid should be extracted from samples immediately, because even short storage periods in buffer AVL have a severe effect on integrity, and the addition of Triton X-100 had little effect on the quality of viral material for WGS.
Zika virus (ZIKV) is an emerging pathogenic flavivirus currently circulating in numerous countries in South America, the Caribbean, and the Western Pacific Region. Using an unbiased metagenomic sequencing approach, we report here the first complete genome sequence of ZIKV isolated from a clinical semen sample.
This study evaluated detection methods for Salmonella Typhi (S. Typhi) in the environment, to establish a novel pathway from field sampling to isolation of viable organisms and molecular confirmation from complex environmental samples, thus enabling environmental surveillance of typhoid.Methods and Results: Multiple media were assessed using clinical isolates from the Public Health England's (PHE) Culture collection. The culture pathway selected consisted of a primary 2% bile broth and secondary Selenite F broth, followed by modified Chromogenic Agar for Salmonella Esterase (mCASE). A qPCR assay was adapted from a validated S. Typhi PCR panel for confirmation of isolates, with comparison to biochemical and serological tests showing good specificity. Sampling locations in Blantyre, Malawi were used to compare sampling methods. Viable S. Typhi were isolated from a mixture of trap and grab river water samples on six occasions.
Conclusions:Culture of viable S. Typhi from environmental samples was possible using effective capture and culture techniques.Significance and impact of study: Whilst several studies have attempted to detect S. Typhi from the environment, this is the first successful attempt to isolate the organism from river water since the 1980s. Supplementing clinical data with environmental screening offers the potential for enhanced surveillance, which might inform interventions and assess vaccination programmes.
Seoul virus (genus Hantavirus; family Bunyaviridae) is an emerging pathogen associated with cases of acute kidney injury in several countries across the globe. We report here the whole-genome sequence of the Tchoupitoulas strain of Seoul virus isolated in New Orleans, LA.
Hybrid de novo assembly of Illumina/Nanopore reads produced a complete closed genome sequence of the chromosome and two virulence plasmids of a Bacillus anthracis isolate from a fatal anthrax case in the United Kingdom linked to imported animal skins/drums; this provides a high-quality representative sequence for this lineage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.