Chick/quail chimeras with partial cerebellar grafts have been performed to obtain further information about the origin and migratory movements of cerebellar cortical neurons. The grafts were performed by exchanging between these two species a precise, small portion of the E2 cerebellar primordium, as defined in Martinez and Alvarado-Mallart (Eur. J. Neurosci. 1:549-560, 1989). All grafts were done unilaterally. The chimeric cerebella, fixed at various developmental stages, were analyzed in serial Feulgen-stained preparations to map the distribution of donor and host cells in the ependymal layer (considered to be reminiscent of the primary germinative neuroepithelium) and in the various cortical layers. In some of the oldest cases, we also used antiquail immunostaining to recognize quail cells. In the ependymal layer, it has been possible to conclude that each hemicerebellar primordium undergoes a morphogenetic rotation that changes its rostrocaudal axis to a rostromedio-caudolateral direction. However, important individual variations were observed among the chimeric embryos with respect to the ependymal area expected to be formed by donor cells. These variations cannot be explained solely on the basis of microsurgical procedure; however, they suggest the existence of important reciprocal interaction between host and grafted neuroepithelia. Therefore, it was not possible to draw a precise fate map of the E2 cerebellar primordium. Nevertheless, the dispersion of grafted cells in the cerebellar cortex, when compared to the real extent of the ependymal grafted area in each particular case, provided important data: (1) The external granular layer (EGL), the secondary germinative epithelium, seems not to originate exclusively from the "germinative trigone," as is usually considered the case. It emerges from a larger but restricted portion of the primary cerebellar matrix extending about the caudal fourth or third of the ventricular epithelium, as defined after its morphogenetic rotation. (2) The Purkinje cells (PCs) develop from all areas of the cerebellar epithelium. Although the distribution of donor PCs parallels the grafted ventricular layer mediolaterally, donor PCs extend more in the rostrocaudal dimension. The PC layer is formed mainly by donor cells in the lobules underlain by the grafted ependymal layer. However, donor PCs are also observed in cortical lobules surmounting the host ventricular layer. In these lobules, the donor PCs form clusters of various widths interrupting the host PCs. Reciprocally, clusters of host PCs are also found in the lobules formed mainly by donor PCs. The alternate small clusters of donor or host PCs are surrounded by Bergmann fibers of the other species' origin.(ABSTRACT TRUNCATED AT 400 WORDS)
The central pattern generator for locomotion in vertebrates is composed of different spinal neuronal populations that generate locomotor movement. In the lamprey spinal cord, several classes of interneurons have been identified based on morphologic and physiological criteria and integrated in the spinal cord circuits implicated in the generation of locomotion. However, the lack of histochemical markers for most of the interneurons makes it difficult to study whole populations along the spinal cord. We have investigated the immunoreactivity with antibodies raised against calbindin and calretinin. Several types of neurons could be classified: (1). strongly immunoreactive neurons located dorsomedially, (2). moderately immunoreactive neurons located laterally, (3). small weakly immunoreactive neurons, d). ventromedial neurons, (4). liquor contacting cells, and (5). motoneurons. The ventromedial group of calbindin-immunoreactive neurons also is immunoreactive for serotonin and, therefore, represents the ventromedial group of dopamine/serotonin spinal neurons. Some of the lateral calbindin-immunoreactive neurons may be CC-type cells (cells with caudal-crossed axons), because they are retrogradely labeled by tracer injections into the contralateral spinal cord. Other well-characterized cell types, such as sensory dorsal cells, lateral interneurons, descending propriospinal edge cells, and spinobulbar giant interneurons are negative for both calbindin and calretinin. Therefore, calbindin and calretinin are useful markers for the study of cell populations that may be integrated in locomotor circuits.
Lampreys, together with hagfishes, represent the sister group of gnathostome vertebrates. There is an increasing interest for comparing the forebrain organization observed in lampreys and gnathostomes to shed light on vertebrate brain evolution. Within the prosencephalon, there is now a general agreement on the major subdivisions of the lamprey diencephalon; however, the organization of the telencephalon, and particularly its pallial subdivisions, is still a matter of controversy. In this study, recent progress on the development and organization of the lamprey telencephalon is reviewed, with particular emphasis on the GABA immunoreactive cell populations trying to understand their putative origin. First, we describe some early general cytoarchitectonic events by searching the classical literature as well as our collection of embryonic and prolarval series of hematoxylin-stained sections. Then, we comment on the cell proliferation activity throughout the larval period, followed by a detailed description of the early events on the development of the telencephalic GABAergic system. In this context, lampreys apparently do not possess the same molecularly distinct subdivisions of the gnathostome basal telencephalon because of the absence of a Nkx2.1-expressing domain in the developing subpallium; a fact that has been related to the absence of a medial ganglionic eminence as well as of its derived nucleus in gnathostomes, the pallidum. Therefore, these data raise interesting questions such as whether or not a different mechanism to specify telencephalic GABAergic neurons exists in lampreys or what are their migration pathways. Finally, we summarize the organization of the adult lamprey telencephalon by analyzing the main proposed conceptions, including the available data on the expression pattern of some developmental regulatory genes which are of importance for building its adult shape.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.