Background A false-negative case of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is defined as a person with suspected infection and an initial negative result by reverse transcription-polymerase chain reaction (RT-PCR) test, with a positive result on a subsequent test. False-negative cases have important implications for isolation and risk of transmission of infected people and for the management of coronavirus disease 2019 (COVID-19). We aimed to review and critically appraise evidence about the rate of RT-PCR false-negatives at initial testing for COVID-19. Methods We searched MEDLINE, EMBASE, LILACS, as well as COVID-19 repositories, including the EPPI-Centre living systematic map of evidence about COVID-19 and the Coronavirus Open Access Project living evidence database. Two authors independently screened and selected studies according to the eligibility criteria and collected data from the included studies. The risk of bias was assessed using the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool. We calculated the proportion of false-negative test results using a multilevel mixed-effect logistic regression model. The certainty of the evidence about false-negative cases was rated using the GRADE approach for tests and strategies. All information in this article is current up to July 17, 2020. Results We included 34 studies enrolling 12,057 COVID-19 confirmed cases. All studies were affected by several risks of bias and applicability concerns. The pooled estimate of false-negative proportion was highly affected by unexplained heterogeneity (tau-squared = 1.39; 90% prediction interval from 0.02 to 0.54). The certainty of the evidence was judged as very low due to the risk of bias, indirectness, and inconsistency issues. Conclusions There is substantial and largely unexplained heterogeneity in the proportion of false-negative RT-PCR results. The collected evidence has several limitations, including risk of bias issues, high heterogeneity, and concerns about its applicability. Nonetheless, our findings reinforce the need for repeated testing in patients with suspicion of SARS-Cov-2 infection given that up to 54% of COVID-19 patients may have an initial false-negative RT-PCR (very low certainty of evidence). Systematic review registration Protocol available on the OSF website: https://tinyurl.com/vvbgqya.
A multilocus sequence typing (MLST) scheme based on seven housekeeping genes was used to investigate the epidemiology and population structure of Enterococcus faecalis. MLST of 110 isolates from different sources and geographic locations revealed 55 different sequence types that grouped into four major clonal complexes (CC2, CC9, CC10, and CC21) by use of eBURST. Two of these clonal complexes, CC2 and CC9, are particularly fit in the hospital environment, as CC2 includes the previously described BVE clonal complex identified by an alternative MLST scheme and CC9 includes exclusively isolates from hospitalized patients. Identical alleles were found in genetically diverse isolates with no linkage disequilibrium, while the different MLST loci gave incongruent phylogenetic trees. This demonstrates that recombination is an important mechanism driving genetic variation in E. faecalis and suggests an epidemic population structure for E. faecalis. Our novel MLST scheme provides an excellent tool for investigating local and short-term epidemiology as well as global epidemiology, population structure, and genetic evolution of E. faecalis.Although classically considered a commensal of the gastrointestinal tracts of humans and animals rather than a specialized human pathogen, enterococci have become extremely relevant in hospital-acquired infections. Their ability to acquire specific genetic traits, such as virulence and antibiotic resistance determinants that could increase their fitness in such a complex ecosystem, has been recognized (18). The paradigm of this evolutionary development is the emergence and spread of vancomycin-resistant enterococci (VRE) (20).Among enterococcal species, Enterococcus faecalis is responsible for most human infections in both community and hospital settings. Though resistance to vancomycin and penicillins is very rare, E. faecalis seems to harbor a broader repertoire of potential virulence traits than E. faecium (34). However, little is known about the relationship between the population structure and global epidemiology of E. faecalis. Different molecular typing methods have been developed to analyze E. faecalis epidemiology (3,11,19,36,37,40). Pulsed-field gel electrophoresis (PFGE) is considered a practical "gold standard" due to its high discriminatory abilities (3, 37), but the most important limitation of PFGE is its low interlaboratory reproducibility and its unsuitability for both global and long-term epidemiology studies or for phylogenetic or population structure studies.For many different bacterial species, the most appropriate technique for global and long-term epidemiology studies is multilocus sequence typing (MLST) (38). MLST provides an unambiguous nomenclature for genotypes, and clones and data are easily stored in databases that can be exchanged between different laboratories via the Internet (1). For E. faecium, the development of an MLST scheme has been critical in the understanding of global epidemiology, genetic evolution, and population structure (14,41). A previous ML...
In previous years, it has been shown that human milk is a potential source of bacteria for the infant gut. The results of this work confirm the presence of the same specific bacterial strains of Bifidobacterium, Lactobacillus, and Staphylococcus in breast milk and infant fecal samples. The identity of bacteria isolated from breast milk and infant feces from 20 mother-infant pairs was investigated at the strain level. DNA from Staphylococcus, Lactobacillus, and Bifidobacterium was detected by qRTi-PCR in nearly all samples analyzed. These samples were cultured on different agar media. One colony representative of each morphology was selected and identified at the species level combining classical tests and molecular techniques (PCR, RAPD, PFGE, and/or MLST genotyping). Breast milk and infant feces from 19 mother-infant pairs shared different Staphylococcus, Lactobacillus, and/or Bifidobacterium species and strains. Significantly, 2 mother-infant pairs shared 4 bacterial strains although most pairs shared 2. These results confirm that breast milk and infant feces from mother-infant pairs share the same strain(s), indicating that breastfeeding could contribute to the bacterial transfer from the mother to the infant and, therefore, to the infant gut colonization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.