In this study, 352 women with infectious mastitis were randomly assigned to 3 groups. Women in groups A (n = 124) and B (n = 127]) ingested daily 9 log(10) colony-forming units (CFU) of L. fermentum CECT5716 or L. salivarius CECT5713, respectively, for 3 weeks, whereas those in group C (n =101) received the antibiotic therapy prescribed in their respective primary care centers. Results. On day 0, the mean bacterial counts in milk samples of the 3 groups were similar (4.35-4.47 log(10) CFU/mL), and lactobacilli could not be detected. On day 21, the mean bacterial counts in the probiotic groups (2.61 and 2.33 log(10) CFU/mL) were lower than that of the control group (3.28 log(10) CFU/mL). L. fermentum CECT5716 and L. salivarius CECT5713 were isolated from the milk samples of women in the probiotic groups A and B, respectively. Women assigned to the probiotic groups improved more and had lower recurrence of mastitis than those assigned to the antibiotic group. Conclusions. The use of L. fermentum CECT5716 or L. salivarius CECT5713 appears to be an efficient alternative to the use of commonly prescribed antibiotics for the treatment of infectious mastitis during lactation. ClinicalTrials.gov identifier. NCT00716183.
In previous years, it has been shown that human milk is a potential source of bacteria for the infant gut. The results of this work confirm the presence of the same specific bacterial strains of Bifidobacterium, Lactobacillus, and Staphylococcus in breast milk and infant fecal samples. The identity of bacteria isolated from breast milk and infant feces from 20 mother-infant pairs was investigated at the strain level. DNA from Staphylococcus, Lactobacillus, and Bifidobacterium was detected by qRTi-PCR in nearly all samples analyzed. These samples were cultured on different agar media. One colony representative of each morphology was selected and identified at the species level combining classical tests and molecular techniques (PCR, RAPD, PFGE, and/or MLST genotyping). Breast milk and infant feces from 19 mother-infant pairs shared different Staphylococcus, Lactobacillus, and/or Bifidobacterium species and strains. Significantly, 2 mother-infant pairs shared 4 bacterial strains although most pairs shared 2. These results confirm that breast milk and infant feces from mother-infant pairs share the same strain(s), indicating that breastfeeding could contribute to the bacterial transfer from the mother to the infant and, therefore, to the infant gut colonization.
Objective:The objective of this work was to study the lactobacilli and bifidobacteria population in human milk of healthy women, and to investigate the influence that several factors (including antibioteraphy during pregnancy and lactation, country and date of birth, delivery mode, or infant age) may exert on such population.Methods:A total of 160 women living in Germany or Austria provided the breast milk samples. Initially, 66 samples were randomly selected and cultured on MRS-Cys agar plates. Then, the presence of DNA from the genera Lactobacillus and Bifidobacterium, and from most of the Lactobacillus and Bifidobacterium species that were isolated, was assessed by qualitative polymerase chain reaction (PCR) using genus- and species-specific primers.Results:Lactobacilli and bifidobacteria could be isolated from the milk of 27 (40.91%) and 7 (10.61%), respectively, of the 66 cultured samples. On the contrary, Lactobacillus and Bifidobacterium sequences were detected by PCR in 108 (67.50%) and 41 (25.62%), respectively, of the 160 samples analyzed. The Lactobacillus species most frequently isolated and detected was L salivarius (35.00%), followed by L fermentum (25.00%) and L gasseri (21.88%), whereas B breve (13.75%) was the bifidobacterial species most commonly recovered and whose DNA was most regularly found. The number of lactobacilli- or bifidobacteria-positive samples was significantly lower in women who had received antibiotherapy during pregnancy or lactation.Conclusions:Our results suggest that either the presence of lactobacilli and/or bifidobacteria or their DNA may constitute good markers of a healthy human milk microbiota that has not been altered by the use of antibiotics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.