In this study, the structure, electrical and thermal properties of ten polymer compositions based on polylactic acid (PLA), low-cost industrial graphene nanoplates (GNP) and multi-walled carbon nanotubes (MWCNT) in mono-filler PLA/MWCNT and PLA/GNP systems with 0–6 wt.% filler content were investigated. Filler dispersion was further improved by combining these two carbon nanofillers with different geometric shapes and aspect ratios in hybrid bi-filler nanocomposites. Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy exhibited uniform dispersion of nanoparticles in a polymer matrix. The obtained results have shown that for the mono-filler systems with MWCNT or GNP, the electrical conductivity increased with decades. Moreover, a small synergistic effect was observed in the GNP/MWCNT/PLA bi-filler hybrid composites when combining GNP and CNT at a ratio of 3% GNP/3% CNT and 1.5% GNP:4.5% CNT, showing higher electrical conductivity with respect to the systems incorporating individual CNTs and GNPs at the same overall filler concentration. This improvement was attributed to the interaction between CNTs and GNPs limiting GNP aggregation and bridging adjacent graphene platelets thus, forming a more efficient network. Thermal conductivity increases with higher filler content; this effect was more pronounced for the mono-filler composites based on PLA and GNP due to the ability of graphene to better transfer the heat. Morphological analysis carried out by electron microscopy (SEM, TEM) and Raman indicated that the nanocomposites present smaller and more homogeneous filler aggregates. The well-dispersed nanofillers also lead to a microstructure which is able to better enhance the electron and heat transfer and maximize the electrical and thermal properties. The obtained composites are suitable for the production of a multifunctional filament with improved electrical and thermal properties for different fused deposition modelling (FDM) 3D printing applications and also present a low production cost, which could potentially increase the competitiveness of this promising market niche.
The limitation of poor mechanical stability and difficulties in printing electrically conductive components can be overcome owing to the recent introduction of nanotechnology into the field of additive manufacturing (AM) and the consequent development of nonconventional polymer nanocomposites suitable for 3D printing. In the present work, different weight percentages (up to 6 wt % in total) of carbon-based nanostructures—multiwalled carbon nanotubes (MWCNTs), graphene nanoplatelets (GNPs), and a combination of both fillers (MWCNTs/GNPs)—were incorporated into poly(lactic) acid (PLA, Ingeo™) in an attempt to overcome several limitations of conventional 3D manufacturing based on insulating materials. Solution blending and melt mixing were the two fabrication methods adopted for preparation of the samples under test. A comparison of the morphological, rheological, and electrical properties of the resulting nanocomposites was carried out. Moreover, for the same weight concentrations, the influence of physical and geometrical features (i.e., functionalization and aspect ratio) of the embedded fillers was also investigated. Rheological methods were applied to control the quality of fillers dispersion in PLA matrix. The rheological percolation threshold was considered as reference in order to evaluate the internal structure of nanodispersions. TEM visualization, combined with rheological characterizations, was used for efficient control of the nanofiller dispersion. DC characterization revealed that lower electrical percolation thresholds and higher values of electrical conductivity were achieved using fillers with a larger aspect ratio and melt mixing, respectively. Moreover, given the possibility of obtaining complex and appropriate shapes for electromagnetic compatibility (EC) applications, electromagnetic (EM) response of the nanocomposites at the highest filler concentration was investigated in GHz and THz regions. It was found that the electromagnetic shielding efficiency (EMI) of nanocomposites strongly depended on the aspect ratio of the nanofillers, whereas the type of processing technique did not have a significant effect. Therefore, a careful choice of methods and materials must be made to address the final application for which these materials and further 3D printed architectures are designed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.