Lie theory of continuous transformations provides a unified and powerful approach for handling differential equations. Unfortunately, any small perturbation of an equation usually destroys some important symmetries, and this reduces the applicability of Lie group methods to differential equations arising in concrete applications. On the other hand, differential equations containing small terms are commonly and successfully investigated by means of perturbative techniques. Therefore, it is desirable to combine Lie group methods with perturbation analysis, i.e., to establish an approximate symmetry theory. There are two widely used approaches to approximate symmetries: the one proposed in 1988 by Baikov, Gazizov and Ibragimov, and the one introduced in 1989 by Fushchich and Shtelen. Moreover, some variations of the Fushchich-Shtelen method have been proposed with the aim of reducing the length of computations. Here, we propose a new approach that is consistent with perturbation theory and allows to extend all the relevant features of Lie group analysis to an approximate context. Some applications are also presented.
We propose an extended version of quantum dynamics for a certain system S, whose evolution is ruled by a Hamiltonian H, its initial conditions, and a suitable set ρ of rules, acting repeatedly on S. The resulting dynamics is not necessarily periodic or quasi-periodic, as one could imagine for conservative systems with a finite number of degrees of freedom. In fact, it may have quite different behaviors depending on the explicit forms of H, ρ as well as on the initial conditions. After a general discussion on this (H, ρ)-induced dynamics, we apply our general ideas to extend the classical game of life, and we analyze several aspects of this extension
Communicated by P. M. MarianoThis paper presents an operatorial model based on fermionic operators for the description of the dynamics of political parties affected by turncoat-like behaviors. By observing the political landscape in place in Italy over the last years, appropriate macro-groups have been identified on the basis of the behavior of politicians in terms of disloyal attitude as well as openness towards accepting chameleons from other parties. Once introduced, a time-dependent number-like operator for each physical observable relevant for the description of the political environment, the analysis of the party system dynamics is carried out by combining the action of a quadratic Hamiltonian operator with certain rules acting periodically on the system in such a way that the parameters entering the model are repeatedly changed so as to express a sort of dependence of them upon the variations of the mean values of the observables.
A simple model, suitable to describe the dynamics of a political system consisting of three macro-groups affected by turncoat-like behaviors and the influence of the opportunistic attitudes of politicians on voters' opinion, is presented. The model is based on raising and lowering fermionic operators whose dynamics is ruled by a suitable quadratic Hamiltonian operator with the addition of specific rules (depending on the variations of the mean values of the observables) able to adjust periodically the model to the political environment, i.e., we move in the framework of the so called (H, ρ)-induced dynamics approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.