The gas turbine combustion chamber is one of the most critical components to be designed, because it must ensure a stable operation in a wide range of air/fuel ratio and load. Among several calculations involved in the design of a combustion chamber, the reference area is the most important physical parameter, especially by the great impact on other dimensions. In general, this parameter must be calculated from an analysis of the limitations imposed both chemical reactions and aerodynamics, i.e., based on combustion process requirements and maximum pressure drop allowable in the combustion chamber, respectively. So, the aim of this paper is investigate the influence of the reference area in the velocity profile, in the temperature distribution, in the mixing process and in the flame behavior, according to the reference area used in the combustion chamber. These numerical analyses were carried out using ANSYS CFX®, comparing them with the base value calculated by Lefebvre [5], for a thermodynamic cycle of 600 kW gas turbine engine, conduced in GateCycle® program. Finally, it can be concluded that some changes in the reference area calculated by Lefebvre [4] produces better results, especially by improving the burning process and the behavior of the flame.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.