The stress protein Nupr1 is a highly basic, multifunctional, intrinsically disordered protein (IDP). MSL1 is a histone acetyl transferase-associated protein, known to intervene in the dosage compensation complex (DCC). In this work, we show that both Nupr1 and MSL1 proteins were recruited and formed a complex into the nucleus in response to DNA-damage, which was essential for cell survival in reply to cisplatin damage. We studied the interaction of Nupr1 and MSL1, and their binding affinities to DNA by spectroscopic and biophysical methods. The MSL1 bound to Nupr1, with a moderate affinity (2.8 µM) in an entropically-driven process. MSL1 did not bind to non-damaged DNA, but it bound to chemically-damaged-DNA with a moderate affinity (1.2 µM) also in an entropically-driven process. The Nupr1 protein bound to chemically-damaged-DNA with a slightly larger affinity (0.4 µM), but in an enthalpically-driven process. Nupr1 showed different interacting regions in the formed complexes with Nupr1 or DNA; however, they were always disordered (“fuzzy”), as shown by NMR. These results underline a stochastic description of the functionality of the Nupr1 and its other interacting partners.
Assembly of the mature human immunodeficiency virus type 1 capsid involves the oligomerization of the capsid protein, CA. The C-terminal domain of CA, CTD, participates both in the formation of CA hexamers and in the joining of hexamers through homodimerization. Intact CA and the isolated CTD are able to homodimerize in solution with similar affinity (dissociation constant in the order of 10 microM); CTD homodimerization involves mainly an alpha-helical region. In this work, we show that first-generation gallic acid-triethylene glycol (GATG) dendrimers bind to CTD. The binding region is mainly formed by residues involved in the homodimerization interface of CTD. The dissociation constant of the dendrimer-CTD complexes is in the range of micromolar, as shown by ITC. Further, the affinity for CTD of some of the dendrimers is similar to that of synthetic peptides capable of binding to the dimerization region, and it is also similar to the homodimerization affinity of both CTD and CA. Moreover, one of the dendrimers, with a relatively large hydrophobic moiety at the dendritic branching (a benzoate), was able to hamper the assembly in vitro of the human immunodeficiency virus capsid. These results open the possibility of considering dendrimers as lead compounds for the development of antihuman immunodeficiency virus drugs targeting capsid assembly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.