Automation of the execution of computational tasks is at the heart of improving scientific productivity. Over the last years, scientific workflows have been established as an important abstraction that captures data processing and computation of large and complex scientific applications. By allowing scientists to model and express entire data processing steps and their dependencies, workflow management systems relieve scientists from the details of an application and manage its execution on a computational infrastructure. As the resource requirements of today's computational and data science applications that process vast amounts of data keep increasing, there is a compelling case for a new generation of advances in high-performance computing, commonly termed as extreme-scale computing, which will bring forth multiple challenges for the design of workflow applications and management systems. This paper presents a novel characterization of workflow management systems using features commonly associated with extreme-scale computing applications. We classify 15 popular workflow management systems in terms of workflow execution models, heterogeneous computing environments, and data access methods. The paper also surveys workflow applications and identifies gaps for future research on the road to extreme-scale workflows and management systems.
We present dispel4py a versatile data-intensive kit presented as a standard Python library. It empowers scientists to experiment and test ideas using their familiar rapid-prototyping environment. It delivers mappings to diverse computing infrastructures, including cloud technologies, HPC architectures and specialised data-intensive machines, to move seamlessly into production with large-scale data loads. The mappings are fully automated, so that the encoded data analyses and data handling are completely unchanged. The underpinning model is lightweight composition of fine-grained operations on data, coupled together by data streams that use the lowest cost technology available. These fine-grained workflows are locally interpreted during development and mapped to multiple nodes and systems such as MPI and Storm for production.We explain why such an approach is becoming more essential in order that data-driven research can innovate rapidly and exploit the growing wealth of data while adapting to current technical trends. We show how provenance management is provided to improve understanding and reproducibility, and how a registry supports consistency and sharing. Three application domains are reported and measurements on multiple infrastructures show the optimisations achieved. Finally we present the next steps to achieve scalability and performance.
BackgroundCloud computing is a new paradigm that is changing how enterprises, institutions and people understand, perceive and use current software systems. With this paradigm, the organizations have no need to maintain their own servers, nor host their own software. Instead, everything is moved to the cloud and provided on demand, saving energy, physical space and technical staff. Cloud-based system architectures provide many advantages in terms of scalability, maintainability and massive data processing.MethodsWe present the design of an e-health cloud system, modelled by an M/M/m queue with QoS capabilities, i.e. maximum waiting time of requests.ResultsDetailed results for the model formed by a Jackson network of two M/M/m queues from the queueing theory perspective are presented. These results show a significant performance improvement when the number of servers increases.ConclusionsPlatform scalability becomes a critical issue since we aim to provide the system with high Quality of Service (QoS). In this paper we define an architecture capable of adapting itself to different diseases and growing numbers of patients. This platform could be applied to the medical field to greatly enhance the results of those therapies that have an important psychological component, such as addictions and chronic diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.