This paper presents dispel4py, a new Python framework for describing abstract stream-based workflows for distributed data-intensive applications. These combine the familiarity of Python programming with the scalability of workflows. Data streaming is used to gain performance, rapid prototyping and applicability to live observations. dispel4py enables scientists to focus on their scientific goals, avoiding distracting details and retaining flexibility over the computing infrastructure they use. The implementation, therefore, has to map dispel4py abstract workflows optimally onto target platforms chosen dynamically. We present four dispel4py mappings: Apache Storm, MPI, multi-threading and sequential, showing two major benefits: a) smooth transitions from local development on a laptop to scalable execution for production work, and b) scalable enactment on significantly different distributed computing infrastructures. Three application domains are reported and measurements on multiple infrastructures show the optimisations achieved; they have provided demanding real applications and helped us develop effective training. The dispel4py.org is an open-source project to which we invite participation. The effective mapping of dispel4py onto multiple target infrastructures demonstrates exploitation of data-intensive and HPC architectures and consistent scalability.
This paper presents dispel4py, a new Python framework for describing abstract stream-based workflows for distributed data-intensive applications. These combine the familiarity of Python programming with the scalability of workflows. Data streaming is used to gain performance, rapid prototyping and applicability to live observations. dispel4py enables scientists to focus on their scientific goals, avoiding distracting details and retaining flexibility over the computing infrastructure they use. The implementation, therefore, has to map dispel4py abstract workflows optimally onto target platforms chosen dynamically. We present four dispel4py mappings: Apache Storm, MPI, multi-threading and sequential, showing two major benefits: a) smooth transitions from local development on a laptop to scalable execution for production work, and b) scalable enactment on significantly different distributed computing infrastructures. Three application domains are reported and measurements on multiple infrastructures show the optimisations achieved; they have provided demanding real applications and helped us develop effective training. The dispel4py.org is an open-source project to which we invite participation. The effective mapping of dispel4py onto multiple target infrastructures demonstrates exploitation of data-intensive and HPC architectures and consistent scalability.
This work presents three new adaptive optimization techniques to maximize the performance of dispel4py workflows. dispel4py is a parallel Python-based stream-orientated dataflow framework that acts as a bridge to existing parallel programming frameworks like MPI or Python multiprocessing. When a user runs a dispel4py workflow, the original framework performs a fixed workload distribution among the processes available for the run. This allocation does not take into account workflows' features, which can cause scalability issues, specially for data-intensive scientific workflows. Therefore, our aim is to improve the performance of dispel4py workflows by testing different workload strategies that automatically adapt to workflows. For achieving this objective, we have implemented three new techniques, called Naive Assignment, Staging and Dynamic Scheduling. The evaluations show that our proposed techniques have significantly improved the performance of the original dispel4py framework.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.