Breast cancer (BC) is a heterogeneous and complex disease as witnessed by the existence of different subtypes and clinical characteristics that poses significant challenges in disease management. The complexity of this tumor may rely on the highly interconnected nature of the various biological processes as stated by the new paradigm of Network Medicine. We explored The Cancer Genome Atlas (TCGA)-BRCA data set, by applying the network-based algorithm named SWItch Miner, and mapping the findings on the human interactome to capture the molecular interconnections associated with the disease modules. To characterize BC phenotypes, we constructed protein–protein interaction modules based on “hub genes”, called switch genes, both common and specific to the four tumor subtypes. Transcriptomic profiles of patients were stratified according to both clinical (immunohistochemistry) and genetic (PAM50) classifications. 266 and 372 switch genes were identified from immunohistochemistry and PAM50 classifications, respectively. Moreover, the identified switch genes were functionally characterized to select an interconnected pathway of disease genes. By intersecting the common switch genes of the two classifications, we selected a unique signature of 28 disease genes that were BC subtype-independent and classification subtype-independent. Data were validated both in vitro (10 BC cell lines) and ex vivo (66 BC tissues) experiments. Results showed that four of these hub proteins (AURKA, CDC45, ESPL1, and RAD54L) were over-expressed in all tumor subtypes. Moreover, the inhibition of one of the identified switch genes (AURKA) similarly affected all BC subtypes. In conclusion, using a network-based approach, we identified a common BC disease module which might reflect its pathological signature, suggesting a new vision to face with the disease heterogeneity.
Background Aberrant expression of microRNAs (miR) has been proposed as non-invasive biomarkers for breast cancers. The aim of this study was to analyse the miR-622 level in the plasma and in tissues of breast cancer patients and to explore the role of miR-622 and its target, the NUAK1 kinase, in this context. Methods miR-622 expression was analysed in plasma and in tissues samples of breast cancer patients by q-RT-PCR. Bioinformatics programs, luciferase assay, public dataset analysis and functional experiments were used to uncover the role of miR-622 and its target in breast cancer cells. Results miR-622 is downregulated in plasma and in tissues of breast cancer patients respect to healthy controls and its downregulation is significantly associated with advanced grade and high Ki67 level. Modulation of miR-622 affects the motility phenotype of breast cancer cells. NUAK1 kinase is a functional target of miR-622, it is associated with poor clinical outcomes of breast cancer patients and is inversely correlated with miR-622 level. Conclusions miR-622/NUAK1 axis is deregulated in breast cancer patients and affects the motility phenotype of breast cancer cells. Importantly, miR-622 and NUAK1 hold promises as biomarkers and as targets for breast cancers.
Studies carried out in the last decade have demonstrated that the members of the KCTD protein family play active roles in carcinogenesis. Very recently, it has been reported that KCTD15, a protein typically associated with other physio-pathological processes, is involved in medulloblastoma and leukemia. Starting with some preliminary indications that emerged from the analysis of online databases that suggested a possible overexpression of KCTD15 in breast cancer, in this study, we evaluated the expression levels of the protein in breast cancer cell lines and in patients and the effects of its silencing in the HER2+ cell model. The analysis of the KCTD15 levels indicates a significant overexpression of the protein in Luminal A and Luminal B breast cancer patients as well as in the related cell lines. The greatest level of over-expression of the protein was found in HER2+ patients and in the related SKBR3 cell line model system. The effects of KCTD15 silencing in terms of cell proliferation, cell cycle, and sensitivity to doxorubicin were evaluated in the SKBR3 cell line. Notably, the KCTD15 silencing in SKBR3 cells by CRISPR/CAS9 technology significantly attenuates their proliferation and cell cycle progression. Finally, we demonstrated that KCT15 silencing also sensitized SKBR3 cells to the cytotoxic agent doxorubicin, suggesting a possible role of the protein in anti HER2+ therapeutic strategies. Our results highlight a new possible player in HER2 breast cancer carcinogenesis, paving the way for its use in breast cancer diagnosis and therapy.
Triple‐negative breast cancer (TNBC) is usually an aggressive disease with a poor prognosis and limited treatment options. The neurotrophic tyrosine receptor kinase (NTRK) gene fusions are cancer type‐agnostic emerging biomarkers approved by the Food and Drug Administration (FDA), USA, for the selection of patients for targeted therapy. The main aim of our study was to investigate the frequency of NTRK aberrations, i.e. fusions, gene copy number gain, and amplification, in a series of TNBC using different methods. A total of 83 TNBCs were analyzed using pan‐TRK immunohistochemistry (IHC), fluorescence in situ hybridization (FISH), real‐time polymerase chain reaction (RT‐PCR), and RNA‐based next‐generation sequencing (NGS). Of 83 cases, 16 showed pan‐TRK positivity although no cases had NTRK‐fusions. Indeed, FISH showed four cases carrying an atypical NTRK1 pattern consisting of one fusion signal and one/more single green signals, but all cases were negative for fusion by NGS and RT‐PCR testing. In addition, FISH analysis showed six cases with NTRK1 amplification, one case with NTRK2 copy number gain, and five cases with NTRK3 copy number gain, all negative for pan‐TRK IHC. Our data demonstrate that IHC has a high false‐positive rate for the detection of fusions and molecular testing is mandatory; there is no need to perform additional molecular tests in cases negativity for NTRK by IHC. In conclusion, the NTRK genes are not involved in fusions in TNBC, but both copy number gain and amplification are frequent events, suggesting a possible predictive role for other NTRK aberrations.
Background Recent observations showed that systemic immune changes are detectable in case of breast cancer (BC). In this preliminary study, we investigated routinely measured peripheral blood (PB) parameters for malignant BC cases in comparison to benign breast conditions. Complete blood count, circulating lymphoid subpopulation, and serological carcinoembryonic antigen (CEA) and cancer antigen 15-3 (CA15-3) levels were considered. Methods A total of 127 female patients affected by malignant (n = 77, mean age = 63 years, min = 36, max = 90) BC at diagnosis (naïve patients) or benign breast conditions (n = 50, mean age = 33 years, min = 18, max = 60) were included in this study. For each patient, complete blood count and lymphoid subpopulations (T-helper, T-cytotoxic, B-, NK-, and NKT-cells) analysis on PB samples were performed. Hormonal receptor status, Ki-67 expression, and serological CEA and CA15-3 levels were assessed in the case of patients with malignant BC via statistical analysis. Results Women with malignant BC disclosed increased circulating T-helper lymphocytes and CD4/CD8 ratio in PB when compared to those affected by benign breast conditions (2.345 vs 1.894, P < .05 Wilcoxon rank-sum test). In the case of malignant BC patients, additive logistic regression method was able to identify malignant BC cases with increased CA15-3 levels (CA15-3 >25 UI/mL) via the hematocrit and neutrophils/lymphocytes ratio values. Moreover, in the case of women with aggressive malignant BC featured by high levels of Ki-67 proliferation marker, an increasing number of correlations were found among blood count parameters and lymphocytes subpopulations by performing a Spearman’s correlation analysis. Conclusions This preliminary study confirms the ability of malignant BC to determine systemic modifications. The stratification of malignant BC cases according to the Ki-67 proliferation marker highlighted increasing detectable alterations in the periphery of women with aggressive BC. The advent of novel and more sensitive biomarkers, as well as deep immunophenotyping technologies, will provide additional insights for describing the relationship between tumor onset and peripheral alterations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.