The acrosome of Platycleis albopunctata (Orthoptera: Tettigoniidae) is relatively large and complex, consisting of an apical vesicle and two large wing-like extensions that give the spermatozoon the shape of an arrow. The wings have actin microfilaments and microtubules and are covered with a noticeable extracellular material. Actin filaments are present in the acrosome when it first appears in spermatid stages. The acrosome and the acrosomal attachment to the nucleus are more resistant than other structures to the reducing agents DTT and SDS. At the end of spermiogenesis, groups of spermatozoa juxtapose their sperm heads and become joined to form a spermatodesm encircled by an amorphous material. Treatment with the ionophore A23187 rapidly disrupted acrosomes of the free gametes, but acrosomes from spermatozoa contained in the spermatodesm were not disassembled. Packaging of sperm in a spermatodesm appears to protect the acrosome.
Proacrosomal vesicles form during the pachytene stage, being synthetized by the Golgi complex in Glycymeris sp., and by both the Golgi and the rough endoplasmic reticulum in Eurhomalea rufa. During early spermiogenesis, a single acrosomal vesicle forms and its apex becomes linked to the plasma membrane while it migrates. In Glycymeris sp., the acrosomal vesicle then turns cap-shaped (1.8 µm) and acquires a complex substructure. In E. rufa, proacrosomal vesicles differentiate their contents while still at the premeiotic stage; as the acrosomal vesicle matures and its contents further differentiate, it elongates and becomes longer than the nucleus (3.2 µm), while the subacrosomal space develops a perforatorium. Before condensation, chromatin turns fibrillar in Glycymeris sp., whereas it acquires a cordonal pattern in E. rufa. Accordingly, the sperm nucleus of Glycymeris sp. is conical and elongated (8.3 µm), and that of E. rufa is short and ovoid (1.1 µm). In the midpiece (Glycymeris sp.: 1.1 µm; E. rufa: 0.8 µm), both species have four mitochondria encircling two linked orthogonal (Glycymeris sp.) or orthogonal and tilted (30-40°; E. rufa) centrioles. In comparison with other Arcoida species, sperm of Glycymeris sp. appear distinct due to the presence of an elongated nucleus, a highly differentiated acrosome, and four instead of five mitochondria. The same occurs with E. rufa regarding other Veneracea species, with the acrosome of the mature sperm strongly resembling that of the recent Mytilinae.
Spermatozoa from the bivalve molluscs Mytilus galloprovincialis, Mytilus chilensis and Chamelea gallina were transfected in vitro using the p-GeneGrip construct, which encodes green fluorescent protein. The efficiency of transfection after brief incubation was assessed by fluorescence and confocal laser microscopy, and was about 58.5-70.01% in the species used. The foreign gene was principally located in the sperm nuclei, as demonstrated by laser confocal serial sections. In some spermatozoa, mitochondria, which are grouped in the base of the nucleus, also appeared to be transfected. Polymerase chain reaction and Southern blot analyses suggested that the foreign DNA had been integrated into the nuclear genome in Mytilus galloprovincialis spermatozoa. This simple method for spermatozoon transfection in molluscs of commercial interest could have biotechnological applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.