Peri-operative SARS-CoV-2 infection increases postoperative mortality. The aim of this study was to determine the optimal duration of planned delay before surgery in patients who have had SARS-CoV-2 infection. This international, multicentre, prospective cohort study included patients undergoing elective or emergency surgery during October 2020. Surgical patients with pre-operative SARS-CoV-2 infection were compared with those without previous SARS-CoV-2 infection. The primary outcome measure was 30-day postoperative mortality. Logistic regression models were used to calculate adjusted 30-day mortality rates stratified by time from diagnosis of SARS-CoV-2 infection to surgery. Among 140,231 patients (116 countries), 3127 patients (2.2%) had a pre-operative SARS-CoV-2 diagnosis. Adjusted 30-day mortality in patients without SARS-CoV-2 infection was 1.5% (95%CI 1.4-1.5). In patients with a pre-operative SARS-CoV-2 diagnosis, mortality was increased in patients having surgery within 0-2 weeks, 3-4 weeks and 5-6 weeks of the diagnosis (odds ratio (95%CI) 4.1 (3.3-4.8), 3.9 (2.6-5.1) and 3.6 (2.0-5.2), respectively). Surgery performed ≥ 7 weeks after SARS-CoV-2 diagnosis was associated with a similar mortality risk to baseline (odds ratio (95%CI) 1.5 (0.9-2.1)). After a ≥ 7 week delay in undertaking surgery following SARS-CoV-2 infection, patients with ongoing symptoms had a higher mortality than patients whose symptoms had resolved or who had been asymptomatic (6.0% (95%CI 3.2-8.7) vs. 2.4% (95%CI 1.4-3.4) vs. 1.3% (95%CI 0.6-2.0), respectively). Where possible, surgery should be delayed for at least 7 weeks following SARS-CoV-2 infection. Patients with ongoing symptoms ≥ 7 weeks from diagnosis may benefit from further delay.
Despite recent advances in the application of data-dependent liquid chromatography/tandem mass spectrometry (LC/MS/MS) to the identification of drug metabolites in complex biological matrixes, a prior knowledge of the likely routes of biotransformation of the therapeutic agent of interest greatly facilitates the detection and structural characterization of its metabolites. Thus, prediction of the [M + H]+ m/z values of expected metabolites allows for the construction of user-defined MS(n) protocols that frequently reveal the presence of minor drug metabolites, even in the presence of a vast excess of coeluting endogenous constituents. However, this approach suffers from inherent user bias, as a result of which additional "survey scans" (e.g., precursor ion and constant neutral loss scans) are required to ensure detection of as many drug-related components in the sample as possible. In the present study, a novel approach to this problem has been evaluated, in which knowledge-based predictions of metabolic pathways are first derived from a commercial database, the output from which is used to formulate a list-dependent LC/MS(n) data acquisition protocol. Using indinavir as a model drug, a substructure similarity search on the MDL metabolism database with a similarity index of 60% yielded 188 "hits", pointing to the possible operation of two hydrolytic, two N-dealkylation, three N-glucuronidation, one N-methylation, and several aromatic and aliphatic oxidation pathways. Integration of this information with data-dependent LC/MS(n) analysis using an ion trap mass spectrometer led to the identification of 18 metabolites of indinavir following incubation of the drug with human hepatic postmitochondrial preparations. This result was accomplished with only a single LC/MS(n) run, representing significant savings in instrument use and operator time, and afforded an accurate view of the complex in vitro metabolic profile of this drug.
Electrochemiluminescence (ECL)-based assays are described for the quantitation of potentially any clinical analyte that can be linked to a β-nicotinamide adenine cofactor-requiring or hydrogen peroxide-forming enzyme. Light was emitted when an appropriate voltage was applied to an electrode immersed in a solution containing the inorganic luminescent complex, ruthenium(II) tris-(bipyridyl), and either NAD(P)H or H 2 O 2 . The detection of H 2 O 2 required oxalate as a coreactant. The amount of emitted light directly related to the concentration of NAD-(P)H or H 2 O 2 . Five classical clinical analytes were quantitated using different formats: glucose (coupled to both NADH-and H 2 O 2 -producing enzymes), ethanol (two NADH-producing enzymes in series), carbon dioxide (NADH-depleting enzyme), cholesterol (H 2 O 2 -forming enzyme), and glucose-6-phosphate dehydrogenase (temporal measurement of catalytic NADPH formation). Satisfactory correlations were found between ECL and conventional spectrophotometric analyses. The wide assortment of formats used to quantitate clinical analytes indicates that many other similarly coupled analytes may also be quantitated by ECL.
Absorption, distribution, metabolism and elimination of doravirine (MK-1439), a novel non-nucleoside reverse transcriptase inhibitor, were investigated. Two clinical trials were conducted in healthy subjects: an oral single dose [C]doravirine (350 mg, ∼200 µCi) trial (n = 6) and an intravenous (IV) single-dose doravirine (100 µg) trial (n = 12). In vitro metabolism, protein binding, apparent permeability and P-glycoprotein (P-gp) transport studies were conducted to complement the clinical trials. Following oral [C]doravirine administration, all of the administered dose was recovered. The absorbed dose was eliminated primarily via metabolism. An oxidative metabolite (M9) was the predominant metabolite in excreta and was the primary circulating metabolite (12.9% of circulating radioactivity). Following IV administration, doravirine clearance and volume of distribution were 3.73 L/h (95% confidence intervals (CI) 3.09, 4.49) and 60.5 L (95% CI 53.7, 68.4), respectively. In vitro, doravirine is not highly bound to plasma proteins (unbound fraction 0.24) and has good passive permeability. The metabolite M9 was generated by cytochrome P450 3A (CYP3A)4/5-mediated oxidation. Doravirine was a P-gp substrate but P-gp efflux is not expected to play a significant role in limiting doravirine absorption or to be involved in the elimination of doravirine. In conclusion, doravirine is a low clearance drug, primarily eliminated by CYP3A-mediated metabolism.
Regimen adherence remains a major hurdle to the success of daily oral drug regimens for the treatment and prevention of human immunodeficiency virus (HIV) infection. Long-acting drug formulations requiring less-frequent dosing offer an opportunity to improve adherence and allow for more forgiving options with regard to missed doses. The administration of long-acting formulations in a clinical setting enables health care providers to directly track adherence. MK-8591 (4'-ethynyl-2-fluoro-2'-deoxyadenosine [EFdA]) is an investigational nucleoside reverse transcriptase translocation inhibitor (NRTTI) drug candidate under investigation as part of a regimen for HIV treatment, with potential utility as a single agent for preexposure prophylaxis (PrEP). The active triphosphate of MK-8591 (MK-8591-TP) exhibits protracted intracellular persistence and, together with the potency of MK-8591, supports its consideration for extended-duration dosing. Toward this end, drug-eluting implant devices were designed to provide prolonged MK-8591 release and Implants, administered subcutaneously, were studied in rodents and nonhuman primates to establish MK-8591 pharmacokinetics and intracellular levels of MK-8591-TP. These data were evaluated against pharmacokinetic and pharmacodynamic models, as well as data generated in phase 1a (Ph1a) and Ph1b clinical studies with once-weekly oral administration of MK-8591. After a single administration in animals, MK-8591 implants achieved clinically relevant drug exposures and sustained drug release, with plasma levels maintained for greater than 6 months that correspond to efficacious MK-8591-TP levels, resulting in a 1.6-log reduction in viral load. Additional studies of MK-8591 implants for HIV treatment and prevention are warranted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.