Mammalian spermatozoa undergo a series of molecular and biochemical changes collectively termed capacitation prior to acquiring the ability to fertilise the oocyte. Although phosphorylation of sperm proteins on tyrosine residues has been recognised as an important component of this process, the precise relationship between the phosphorylation status of mammalian spermatozoa and their capacity for fertilisation has remained unclear. In this study we demonstrate a causal relationship between tyrosine phosphorylation in spermatozoa and sperm-zona interaction. The phosphotyrosine expression associated with sperm capacitation localised to internal flagellar structures in permeabilised cells but could also be detected on the exterior surface of the sperm head in live cells. Importantly, almost all spermatozoa bound to the zona pellucida demonstrated this pattern of phosphoprotein localisation, compared to fewer than 15% of the free-swimming population. These data suggest that tyrosine phosphorylation plays a significant role in remodelling the sperm surface, so that these cells are able to recognise the zona pellucida. Phosphoproteome analysis yielded the first evidence of molecular chaperones, endoplasmin (erp99) and heat shock protein 60 (hsp60), as targets for phosphorylation on the surface of mouse spermatozoa, whereas immunofluorescence localised these proteins to the precise region of the sperm head that participates in zona recognition. Based on these results, we propose a novel mechanism for mammalian gamete interaction whereby the activation of sperm-surface chaperones by tyrosine phosphorylation during capacitation may trigger conformational changes facilitating the formation of a functional zona pellucida receptor complex on the surface of mammalian spermatozoa.
Alterations in CD151 have been associated with primary glomerular disease in both humans and mice, implicating CD151 as a key component of the glomerular filtration barrier. CD151 belongs to the tetraspanin family and associates with cell-matrix adhesion complexes such as alpha3beta1-integrin. Here we show that Cd151-deficient mice develop severe kidney disease on an FVB background but are healthy on a B6 background, providing a new and unique tool for the identification of genes that modulate the onset of proteinuria. To better understand the function of CD151 in the kidney, we studied its expression pattern and characterized early ultrastructural defects in Cd151-null kidneys. CD151 is expressed in podocytes of the mouse kidney and co-localizes with alpha3-integrin at the base of podocyte foot processes, at the site of anchorage to the glomerular basement membrane (GBM). Interestingly, the first ultrastructural lesions seen at the onset of proteinuria in Cd151-null kidneys were severe alterations of the GBM, reminiscent of Alport syndrome and consisting of massive thickening and splitting of the GBM. These lesions are associated with increased expression of GBM components. Podocyte abnormalities, effacement of foot processes, and podocyte loss appear to occur consequently to the GBM damage. In conclusion, CD151 appears to be involved in the establishment, maturation, and/or maintenance of the GBM structure in addition to its role in integrin-mediated adhesion strengthening.
The molecular mechanisms leading to male infertility in vitamin A deficient (VAD) rodents have never been fully elucidated. Here, we report an interaction between BMP4 and retinoid signaling pathways in germ cells that may help clarify the biochemical basis of VAD. Adult germ cells, in particular spermatogonia, expressed BMP4 at both the mRNA and protein levels. BMP4 expression was significantly up-regulated in the testes of VAD mice and was down-regulated in freshly isolated germ cells and VAD testes by retinol, but not retinoic acid. The retinoid-responsive gene, RARbeta, was not induced in germ cells following retinoid treatment. Examination of BMP4 promoter usage in spermatogonia and the VAD testis revealed that germ cells utilize the recently characterized BMP4 intron 2 promoter, in addition to the classical 1A and 1B promoters. The observed decrease in BMP4 in response to retinol was mediated by the 1A and intron 2 promoters of the BMP4 gene. Our results reflect a direct requirement for retinoids by germ cells for the resumption of spermatogenesis in VAD animals via mechanisms that involve the suppression of BMP4 expression.
Certain mutations within c-KIT cause constitutive activation of the receptor and have been associated with several human malignancies. These include gastrointestinal stromal tumors (GIST), mastocytosis, acute myelogenous leukemia, and germ cell tumors. The kinase inhibitor imatinib potently inhibits c-KIT and is approved for treatment of GIST. However, secondary point mutations can develop within the kinase domain to confer resistance to imatinib and cause drug-resistant relapse. A common mutation, which results in a V654A substitution,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.