In this paper, we present a probabilistic seismic hazard analysis (PSHA) for mainland Spain that takes into account recent new results in seismicity, seismic zoning, and strong ground attenuation not considered in the latest PSHA of the Spanish Building Code. Those new input data have been obtained as a three-step project carried out in order to improve the existing hazard map for mainland Spain. We have produced a new earthquake catalogue for the area, in which the earthquakes are given in moment magnitude through specific deduced relationships for our territory based on intensity data (Mezcua et al. in Seismol Res Lett 75:75-81, 2004). In addition, we included a new seismogenetic zoning based on the recent partial zoning studies performed by different authors. Finally, as we have developed a new strong ground motion model for the area García Blanco (2009), it was considered in the hazard calculation together with other attenuations gathered from different authors using data compatible with our region. With this new data, a logic tree process is defined to quantify the epistemic uncertainty related to those parts of the process. A sensitivity test has been included in order to analyze the different models of ground motion and seismotectonic zonation used in this work. Finally, after applying a weighting scheme, a mean hazard map for PGA, based on rock type condition for 10% exceedance probability in 50 years, is presented, including 15th and 85th percentile hazard maps. The main differences with the present official building code hazard map are analyzed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.