Ground penetrating radar (GPR) investigations have the potential to non-destructively detect buried or hidden targets and are therefore often used in forensic research. This study presents a particular application of GPR methods to search for a missing person in a specific subsurface environment: a natural cave. The search for missing people in Italy is a problematic and delicate task that needs improvement. Results of this study highlight not only the ability to detect both hollow and forensic targets, but also precisely locate and define their geometries. Moreover, GPR findings efficiently focus archaeological excavation and body recovery in an exact area and help to minimise time digging in erroneous places.
Despite widespread concern over missing persons, there has always been little clarity on what the word “missing” means. Although the category of young runaways is, indeed, an important cluster, other popular concepts related to disappearances describe a portion of missing persons. Thus, the following question persists: What exactly does “missing” mean? In this brief communication, we would like to open a discussion about the social phenomenon of missing persons and the consequent deployment of people and techniques to find those persons. In particular, the benefits of some forensic geoarchaeological approaches that are not yet fully standardized will be highlighted, such as geographic profiling and the use of multispectral satellite images, in order to provide materials for future searching protocols.
Forensic geology has developed in each country dependent on the history, political and social setting, anthropological influences and geology. The aim of this section is to provide a global overview of forensic geology, including the history, developments and future challenges in Africa,
Earthquakes represent one of the world's most significant hazards in terms of damage to human and animal life, and property. Earthquakes also cause many other related fatalities and damage to urban structures. This paper presents the forensic investigation of failures induced by the Norcia 2016 earthquake in Italy. The detailed geophysical field investigations were carried out at selected locations in two cities: Rome and Amelia. The places of investigation were 150 km and 90 km, respectively, from the epicenter. A ground penetrating radar (GPR) survey was carried out at the sites to highlight structural failures, and included a partially damaged urban bridge, and the cracked wall of a private house. These failures have been discussed with reference to the field measurements carried out. In both cases, the GPR radargram showed clear lesions along with their geometry and location. This forensic geoscientific analysis highlights the importance of detecting structural damage immediately after a geohazard event to help plan proper interventions, efforts to prevent human losses and help law enforcement to focus their forensic investigations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.