This research proposes an innovative data model to determine the landscape of emerging technologies. It is based on a competitive technology intelligence methodology that incorporates the assessment of scientific publications and patent analysis production, and is further supported by experts’ feedback. It enables the definition of the growth rate of scientific and technological output in terms of the top countries, institutions and journals producing knowledge within the field as well as the identification of main areas of research and development by analyzing the International Patent Classification codes including keyword clusterization and co-occurrence of patent assignees and patent codes. This model was applied to the evolving domain of 3D bioprinting. Scientific documents from the Scopus and Web of Science databases, along with patents from 27 authorities and 140 countries, were retrieved. In total, 4782 scientific publications and 706 patents were identified from 2000 to mid-2016. The number of scientific documents published and patents in the last five years showed an annual average growth of 20% and 40%, respectively. Results indicate that the most prolific nations and institutions publishing on 3D bioprinting are the USA and China, including the Massachusetts Institute of Technology (USA), Nanyang Technological University (Singapore) and Tsinghua University (China), respectively. Biomaterials and Biofabrication are the predominant journals. The most prolific patenting countries are China and the USA; while Organovo Holdings Inc. (USA) and Tsinghua University (China) are the institutions leading. International Patent Classification codes reveal that most 3D bioprinting inventions intended for medical purposes apply porous or cellular materials or biologically active materials. Knowledge clusters and expert drivers indicate that there is a research focus on tissue engineering including the fabrication of organs, bioinks and new 3D bioprinting systems. Our model offers a guide to researchers to understand the knowledge production of pioneering technologies, in this case 3D bioprinting.
While novel technologies have tremendous competitive potential, they also involve certain risks. Maturity assessment analyzes how well a technological development can fulfill an expected task. The technology readiness level (TRL) has been considered to be one of the most promising approaches for addressing technological maturity. Nonetheless, its assessment requires opinions of the experts, which is costly and implies the risk of personal bias. To fill this gap, this paper presents a Bibliometric Method for Assessing Technological Maturity (BIMATEM). It is a repeatable framework that assesses maturity quantitatively. Our method is based on the assumption that each technology life cycle stage can be matched to technology records contained in scientific literature, patents, and news databases. The scientific papers and patent records of mature technologies display a logistic growth behavior, while news records follow a hype-type behavior. BIMATEM determines the maturity level by curve fitting technology records to these behaviors. To test our approach, BIMATEM was applied to additive manufacturing (AM) technologies. Our results revealed that material extrusion, material jetting, powder bed fusion and vat photopolymerization are the most mature AM technologies with TRL between 6 and 7, followed by directed energy deposition with TRL between 4 and 5, and binder jetting and sheet lamination, the least mature, with TRL between 1 and 2. BIMATEM can be used by competitive technology intelligence professionals, policymakers, and further decision makers whose main interests include assessing the risk of implementing new technologies. Future research can focus on testing the method with regard to altmetrics.Electronic supplementary materialThe online version of this article (10.1007/s11192-018-2941-1) contains supplementary material, which is available to authorized users.
The fuel-cell electric vehicle (FCEV) has been defined as a promising way to avoid road transport greenhouse emissions, but nowadays, they are not commercially available. However, few studies have attempted to monitor the global scientific research and technological profile of FCEVs. For this reason, scientific research and technological development in the field of FCEV from 1999 to 2019 have been researched using bibliometric and patent data analysis, including network analysis. Based on reports, the current status indicates that FCEV research topics have reached maturity. In addition, the analysis reveals other important findings: (1) The USA is the most productive in science and patent jurisdiction; (2) both Chinese universities and their authors are the most productive in science; however, technological development is led by Japanese car manufacturers; (3) in scientific research, collaboration is located within the tri-polar world (North America-Europe-Asia-Pacific); nonetheless, technological development is isolated to collaborations between companies of the same automotive group; (4) science is currently directing its efforts towards hydrogen production and storage, energy management systems related to battery and hydrogen energy, Life Cycle Assessment, and greenhouse gas (GHG) emissions. The technological development focuses on technologies related to electrically propelled vehicles; (5) the International Journal of Hydrogen Energy and SAE Technical Papers are the two most important sources of knowledge diffusion. This study concludes by outlining the knowledge map and directions for further research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.