Thermal energy storage (TES) is extremely important in concentrated solar power (CSP) plants since it represents the main difference and advantage of CSP plants with respect to other renewable energy sources such as wind, photovoltaic, etc. CSP represents a low-carbon emission renewable source of energy, and TES allows CSP plants to have energy availability and dispatchability using available industrial technologies. Molten salts are used in CSP plants as a TES material because of their high operational temperature and stability of up to 500°C. Their main drawbacks are their relative poor thermal properties and energy storage density. A simple cost-effective way to improve thermal properties of fluids is to dope them with nanoparticles, thus obtaining the so-called salt-based nanofluids. In this work, solar salt used in CSP plants (60% NaNO3 + 40% KNO3) was doped with silica nanoparticles at different solid mass concentrations (from 0.5% to 2%). Specific heat was measured by means of differential scanning calorimetry (DSC). A maximum increase of 25.03% was found at an optimal concentration of 1 wt.% of nanoparticles. The size distribution of nanoparticle clusters present in the salt at each concentration was evaluated by means of scanning electron microscopy (SEM) and image processing, as well as by means of dynamic light scattering (DLS). The cluster size and the specific surface available depended on the solid content, and a relationship between the specific heat increment and the available particle surface area was obtained. It was proved that the mechanism involved in the specific heat increment is based on a surface phenomenon. Stability of samples was tested for several thermal cycles and thermogravimetric analysis at high temperature was carried out, the samples being stable.PACS65.: Thermal properties of condensed matter; 65.20.-w: Thermal properties of liquids; 65.20.Jk: Studies of thermodynamic properties of specific liquids
of silica-water nanofluids dispersed with an ultrasound probe: A study of their physical properties and stability. Powder Technology, 2012, Vol. 224 AbstractThe stability and agglomeration state of nanofluids are key parameters for their use in different applications. Silica nanofluids were prepared by dispersing the nanoparticles in distilled water using an ultrasonic probe, which has proved to be the most effective system and gives the best results when compared with previous works. Results were obtained concerning the influence of the solid content, pH and salt concentration on the zeta potential, electrical double layer, viscosity, elastic and viscous moduli, particle size and light backscattering. Measurement of all these properties provides information about the colloidal state of nanofluids. The most important variable is the solid content.Despite the agglomeration due to high concentration, nanofluids with low viscosity and behaving like liquid were prepared at 20% of mass load thanks to the good dispersion achieved with the ultrasonic treatment. The pH of the medium can be used to control the stability, since the nanofluids are more stable under basic conditions far from the isoelectric point (IEP) and settle at pH = 2. Therefore, stable nanofluids for at least 48 h, with high solid content, can be prepared at high pH value (pH > 7) due to the electrostatic repulsion between particles.
Nanofluids using nanoencapsulated Phase Change Materials (nePCM) allow increments in both the thermal conductivity and heat capacity of the base fluid. Incremented heat capacity is produced by the melting enthalpy of the nanoparticles core. In this work two important advances in this nanofluid type are proposed and experimentally tested. It is firstly shown that metal and metal alloy nanoparticles can be used as self-encapsulated nePCM using the metal oxide layer that forms naturally in most commercial synthesis processes as encapsulation. In line with this, Sn/SnOx nanoparticles morphology, size and thermal properties were studied by testing the suitability and performance of encapsulation at high temperatures and thermal cycling using a commercial thermal oil (Therminol 66) as the base fluid. Secondly, a mechanism to control the supercooling effect of this nePCM type based on non-eutectic alloys was developed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.