Nutritional and healthy values are well known properties of virgin olive oil (VOO). The product quality, in terms of belonging to a specific quality grade (extra virgin, virgin, lampante), is defined by a set of chemical-physical and sensory measurements. According to the official regulation of the European Union (EU Reg. 1348/2013) the free acidity is the first parameter that has to be determined by analysts; it gives information about the quality of the olives used to produce the VOO as well as the hydrolytic state of VOO just produced and stored. The official procedure is based on an acid-base titration that needs to be carried out in a chemical laboratory. In this paper a portable battery-operated electronic system to measure olive oil free acidity is presented: the system can be used for quick "in situ" tests in a production environment (olive oil mills or packaging centers) by people without particular training. The working principles of the system is based on the creation of an emulsion between oil and a hydroalcoholic solution: the free acidity is estimated on the value of the emulsion electrical conductance. This new system has been calibrated and in-house validated showing good results in terms of limit of detection and quantification, precision and accuracy, beyond a good correlation with free acidity data obtained applying the official method (R 2 adj = 0.97).
In this preliminary investigation, different commercial categories of Italian cooked pork hams have been characterized using an integrated approach based on both sensory and fast instrumental measurements. For these purposes, Italian products belonging to different categories (cooked ham, “selected” cooked ham and “high quality” cooked ham) were evaluated by sensory descriptive analysis and by the application of rapid tools such as image analysis by an “electronic eye” and texture analyzer. The panel of trained assessors identified and evaluated 10 sensory descriptors able to define the quality of the products. Statistical analysis highlighted that sensory characteristics related to appearance and texture were the most significant in discriminating samples belonged to the highest (high quality cooked hams) and the lowest (cooked hams) quality of the product whereas the selected cooked hams, showed intermediate characteristics. In particular, high quality samples were characterized, above all, by the highest intensity of pink intensity, typical appearance and cohesiveness, and, at the same time, by the lowest intensity of juiciness; standard cooked ham samples showed the lowest intensity of all visual attributes and the highest value of juiciness, whereas the intermediate category (selected cooked ham) was not discriminated from the other. Also physical-rheological parameters measured by electronic eye and texture analyzer were effective in classifying samples. In particular, the PLS model built with data obtained from the electronic eye showed a satisfactory performance in terms of prediction of the pink intensity and presence of fat attributes evaluated during the sensory visual phase.This study can be considered a first application of this combined approach that could represent a suitable and fast method to verify if the meat product purchased by consumer match its description in terms of compliance with the claimed quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.