This study aimed to evaluate the potential of 10%, 20%, and 30% of raw (ARF) and germinated (AGF) ayocote bean flour as a partial substitute for wheat flour in breadmaking. Substitution with both ayocote bean flours modified the water absorption and development time while maintaining the dough stability. Supplemented breads had 13%, 51%, and 132% higher protein, mineral, and crude fiber content, respectively, than control bread (100% wheat). The breadmaking features, color and crumb firmness, were affected by the substitution level. Sensory analysis revealed that germination could improve the taste and smell of breads produced with ayocote bean flour. The sensory attribute scores of 10% AGF bread were comparable to those of the control bread. Supplementation reduced the in vitro protein digestibility, although the effect was less pronounced in 10% ARF and 20% AGF breads. The limiting amino acid score of supplemented breads increased up to 70%, which improved their protein digestibility‐corrected amino acid scores. Supplementation with 20% or 30% of both ARF and AGF increased resistant starch values and decreased the total digestible starch of breads. Thus, the results showed that substituting wheat with ARF or AGF improves the nutritional properties of bread. However, low substitution levels should be selected to avoid a considerable decrease in physical and sensory properties.
Practical Application
Substituting wheat flour with ayocote bean flour improved the nutritional value of bread.
Germination of ayocote beans decreased the cooking stability of composite dough.
Bread fortified with ayocote flour had high levels of essential amino acids.
Bread with raw or germinated ayocote flours had high limiting amino acid scores.
Composite bread had high resistant starch and low total digestible starch.
Summary
Oaxaca cheese, produced using the pasta filata method, is a very popular Mexican dairy products. In this work, the effect of high hydrostatic pressure (HHP) and the acidification process before and after HHP treatment of raw cow milk was studied at different pressure levels (150, 300 and 500 MPa) and holding times (10 and 30 min). Clotting time, proximal composition, microstructure, secondary protein structure and electrophoretic profile were evaluated. HHP did not influence clotting time in samples acidified before HHP, but it appears to have a positive effect at lower pressure treatments on non‐acidified milk. Moisture, protein and fat were similar in cheeses treated at most HHP conditions regardless of the acidification. HHP did not influence the microstructure of cheese and the secondary structure of proteins. The use of HHP during the manufacture of Oaxaca cheese allowed preserving quality parameters evaluated without advantages in processing time and the product's proximal composition.
Nowadays, dairy products, especially fermented products such as yogurt, fromage frais, sour cream and custard, are among the most studied foods through tribological analysis due to their semi-solid appearance and close relationship with attributes like smoothness, creaminess and astringency. In tribology, dairy products are used to provide information about the friction coefficient (CoF) generated between tongue, palate, and teeth through the construction of a Stribeck curve. This provides important information about the relationship between friction, food composition, and sensory attributes and can be influenced by many factors, such as the type of surface, tribometer, and whether saliva interaction is contemplated. This work will review the most recent and relevant information on tribological studies, challenges, opportunity areas, saliva interactions with dairy proteins, and their relation to dairy product sensory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.