Atherosclerotic cardiovascular diseases, chronic inflammatory diseases of multifactorial etiology, are the leading cause of death worldwide. In the last decade, more infectious agents, labeled as "infectious burden", rather than any single pathogen, have been showed to contribute to the development of atherosclerosis through different mechanisms. Some microorganisms, such as Chlamydia pneumoniae (C. pneumoniae), human cytomegalovirus, etc. may act directly on the arterial wall contributing to endothelial dysfunction, foam cell formation, smooth muscle cell proliferation, platelet aggregation as well as cytokine, reactive oxygen specie, growth factor, and cellular adhesion molecule production. Others, such as Helicobacter pylori (H. pylori), influenza virus, etc. may induce a systemic inflammation which in turn may damage the vascular wall (e.g., by cytokines and proteases). Moreover, another indirect mechanism by which some infectious agents (such as H. pylori, C. pneumoniae, periodontal pathogens, etc.) may play a role in the pathogenesis of atherosclerosis is molecular mimicry. Given the complexity of the mechanisms by which each microorganism may contribute to atherosclerosis, defining the interplay of more infectious agents is far more difficult because the pro-atherogenic effect of each pathogen might be amplified. Clearly, continued research and a greater awareness will be helpful to improve our knowledge on the complex interaction between the infectious burden and atherosclerosis.
The role in virulence of the Shigella flexneri ospB-phoN2 operon has been evaluated. Here we confirm that OspB is an effector and show that apyrase, the product of phoN2, may be a virulence factor, since it is required for efficient intercellular spreading. Apyrase may be important in a deoxynucleoside triphosphate-hydrolyzing activity-independent manner, suggesting that it may act as an interaction partner in the process of IcsA localization.ospB and phoN2 (apy) are genes located on the virulence plasmid (pINV) of Shigella species and of related enteroinvasive Escherichia coli (EIEC) strains (3,6,35). Indirect evidence indicates that ospB and phoN2 may contribute to pathogenicity (1,3,5,8,17,23,25,35). ospB encodes a protein of unknown function (OspB) surmised to be an effector secreted by the type III secretion (TTS) apparatus of Shigella flexneri (6,20). The two genes are organized in a single highly conserved bicistronic operon. Although phoN2 encodes a periplasmic protein (5), their expression is regulated by the VirF-VirB cascade (35) and by MxiE in concert with IpgC so that they are expressed in a VirB-dependent, MxiE-independent manner under conditions of nonactivated secretion and are up-regulated, in a MxiEdependent manner, under conditions of activated secretion (8,17,20,26,30), indicating that these genes may be important in postinvasion events related to virulence.phoN2 encodes apyrase, a periplasmic enzyme which belongs to the family of ATP-hydrolyzing enzymes (3, 5, 18) able to sequentially hydrolyze nucleoside triphosphates to diphosphates and then to monophosphates. However, it is not active against monophosphates, a distinguishing feature from acid phosphatases (1,3,41). Due to its catalytic activity and primary structure (apyrase presents an exposed N-terminal poly-proline sequence), it has been implicated in the decrease of host cell intracellular ATP, a characteristic metabolic event following S. flexneri infection, as well as in the S. flexneri-induced actin-polymerization process (1,3,5,25,35). Thus, these findings strongly suggest that OspB and apyrase may be virulence factors. The purpose of this study was to investigate the role of both genes in the mechanism of pathogenicity of S. flexneri. OspB is an effector secreted by the TTS apparatus of S. flexneri. To confirm and extend previous reports indicatingOspB as an effector secreted by the TTS apparatus (6, 20), we transduced a nonpolar deletion encompassing mxiA into the S. flexneri M90T derivative strain HND549 (ospB::3ϫFLAG), thus generating HND5311 (mxiA ospB::3ϫFLAG) ( Table 1). C-terminal 3ϫ FLAG tagging was achieved essentially as described by Uzzau et al. (42) using the specific primer pair shown in Table S1 in the supplemental material. Whole-cell extracts and supernatants of exponentially growing bacteria were analyzed by immunoblotting using monoclonal antibodies against the 3ϫ FLAG epitope (Sigma) and mouse polyclonal antibodies preparation directed against apyrase (Fig. 1). Apyrase antiserum was obtained by immunizing BALB/...
Chlamydia trachomatis is an obligate, intracellular pathogen responsible for the most common sexually transmitted bacterial disease worldwide, causing acute and chronic infections. The acute infection is susceptible to antibiotics, whereas the chronic one needs prolonged therapies, thus increasing the risk of developing antibiotic resistance. Novel alternative therapies are needed. The intracellular development of C. trachomatis requires essential nutrients, including iron. Iron-chelating drugs inhibit C. trachomatis developmental cycle. Lactoferrin (Lf), a pleiotropic iron binding glycoprotein, could be a promising candidate against C. trachomatis infection. Similarly to the efficacy against other intracellular pathogens, bovine Lf (bLf) could both interfere with C. trachomatis entry into epithelial cells and exert an anti-inflammatory activity. In vitro and in vivo effects of bLf against C. trachomatis infectious and inflammatory process has been investigated. BLf inhibits C. trachomatis entry into host cells when incubated with cell monolayers before or at the moment of the infection and down-regulates IL-6/IL-8 synthesized by infected cells. Six out of 7 pregnant women asymptomatically infected by C. trachomatis, after 30 days of bLf intravaginal administration, were negative for C. trachomatis and showed a decrease of cervical IL-6 levels. This is the first time that the bLf protective effect against C. trachomatis infection has been demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.