Multiphoton excited (MPE) photochemistry is used to fabricate model tissue engineering scaffolds directly from types I, II, and IV collagen. A modified benzophenone dimer (BPD) provides the photoactivation and becomes incorporated into the resulting collagen matrixes. Unlike xanthene photochemistries, the benzophenone dimer can be used in acidic environments, where most forms of collagen have the greatest solubility. The minimum feature sizes are investigated by using two- and three-photon excitation, where the latter provides for superior "resolution" and suggests that collagen structures can be fabricated on the size scales of focal contacts. The resulting structures display excellent retention of bioactivity as evidenced by highly specific cell adhesion as well as immunofluorescence labeling. Structural and chemical aspects of the collagen matrixes are probed through measuring the enzymatic degradation through specific and nonspecific proteases, as the resulting relative rates are consistent with the activity of these enzymes. The degradation rates can also be controlled through varying the cross-link density in the matrixes, which is achieved through tuning the exposure dose during the fabrication process. The degradation rates are also found to be consistent with swelling/shrinking measurements and thus the average mesh size of the matrixes. In all cases the enzymatic degradations are well-fit single exponentials, suggesting that the matrixes can be fabricated with a priori knowledge of their structural properties. These results coupled with the resulting bioactivity suggest that the multiphoton fabrication process may be a powerful tool for the creation of cell-sized tissue engineering scaffolds.
We report the synthesis and optical characterization of two new photoactivators and demonstrate their use for multiphoton excited three-dimensional free-form fabrication with proteins. These reagents were developed with the goal of cross-linking Type 1 collagen. This cross-linking process produces structures on the micron and submicron size scales. A rose bengal diisopropyl amine derivative combines the classic photoactivator and co-initiator system into one molecule, reducing the reaction kinetics and increasing cross-linking efficiency. This derivative was successful at producing stable structures from collagen, whereas rose bengal alone was not effective. A benzophenone dimer connected by a flexible diamine tether was also synthesized. This activator has two photochemically reactive groups and is highly efficient in cross-linking bovine serum albumin and Type 1 collagen to form stable, robust structures. This approach is more flexible in terms of cross-linking a variety of proteins than by traditional benzophenone photochemistry. The photophysical properties vary greatly from that of benzophenone, with the appearance of a new, lower energy absorption band (lambda max approximately 370 nm in water) and broad, visible emission band (approximately 500 nm maximum). This absorption band is highly solvatochromic, suggesting it arises, at least in part, from a charge transfer interaction. Collagens are typically difficult to cross-link photochemically, and the results here suggest that these two new activators will be suitable for cross-linking other forms of collagen and additional proteins for biomedical applications such as the de novo assembly of biomimetic tissue scaffolds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.