Light-triggered reversible modulation of physiological functions offers the promise of enabling on-demand spatiotemporally controlled therapeutic interventions. Optogenetics has been successfully implemented in the heart, but significant barriers to its use in the clinic remain, such as the need for genetic transfection. Herein, we present a method to modulate cardiac function with light through a photoswitchable compound and without genetic manipulation. The molecule, named PAI, was designed by introduction of a photoswitch into the molecular structure of an M2 mAChR agonist. In vitro assays revealed that PAI enables light-dependent activation of M2 mAChRs. To validate the method, we show that PAI photoisomers display different cardiac effects in a mammalian animal model, and demonstrate reversible, real-time photocontrol of cardiac function in translucent wildtype tadpoles. PAI can also effectively activate M2 receptors using two-photon excitation with near-infrared light, which overcomes the scattering and low penetration of short-wavelength illumination, and offers new opportunities for intravital imaging and control of cardiac function.
Alzheimer's disease (AD) is one of the most prevalent neurodegenerative diseases of the central nervous system. The aggregation of the amyloid-β peptide, Aβ(1-42), is believed to play an important role in the pathogenesis of AD. Histone H1 is found in the cytoplasm of neurons in AD, and it has been shown to interact with aggregated amyloid-β peptides and with amyloid fibrils. We have used Thioflavin T (ThT) fluorescence enhancement, circular dichroism spectroscopy (CD), coprecipitation, and transmission electron microscopy (TEM) to study the interaction of histone H1 with Aβ(1-42). Both freshly prepared (monomeric) Aβ(1-42) and histone H1 solutions showed negative CD bands typical of the random coil. Mixing Aβ(1-42) and histone H1 led to the loss of the random coil, which was replaced mostly by β-structure. Therefore, both Aβ(1-42) and histone H1 behave as intrinsically disordered proteins with coupled binding and folding. Mutual structure induction demonstrates the interaction of Aβ(1-42) and histone H1. The interaction was confirmed by coprecipitation followed by SDS-PAGE. Mutual structure induction was also observed with the H1 terminal domains. Incubation of Aβ(1-42) for 1 week in the presence of histone H1 led to the formation of laminar aggregates and thick bundles, characterized by the parallel association of large numbers of fibrils. The aggregates were particularly large and ordered with the H1 subtype H1.2. Further aging of the complexes led to tight compaction of fibril bundles and to fiber growth. Stabilization of fibril-fibril interactions appeared to be determined by the C-terminal domain of histone H1. In summary, these observations indicate that histone H1 has at least two effects: it helps the folding of Aβ monomers and stabilizes the parallel association of fibrils.
Tricyclic chemical structures are the core of many important drugs targeting all neurotransmitter pathways. These medicines enable effective therapies to treat from peptic ulcer disease to psychiatric disorders. However, when administered systemically they cause serious adverse effects that limit their use. In order to obtain localized and on-demand pharmacological action using light, we have designed photoisomerizable ligands based on azobenzene that mimic the tricyclic chemical structure and display reversibly controlled activity. Pseudo analogs of the tricyclic antagonist pirenzepine demonstrate that this is an effective strategy in muscarinic acetylcholine receptors, showing stronger inhibition upon illumination both in vitro and in cardiac atria ex vivo.Despite the applied chemical modifications to make pirenzepine derivatives sensitive to light stimuli, the most potent candidate of the set, cryptozepine-2, maintained a moderate but promising M1 vs M2 subtype selectivity. These photoswitchable "crypto-azologs" of tricyclic drugs might open a general way to spatiotemporally target their therapeutic action while reducing their systemic toxicity and adverse effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.