Aberrant activation of epithelial-to-mesenchymal transition has been shown to correlate with triple-negative breast cancer (TNBC) progression and metastasis. Thus, the induction of the reverse process might offer promising opportunities to restrain TNBC metastatic spreading and related mortality. Recently, the Annurca apple polyphenol extract (APE) has been highlighted as a multi-faceted agent that selectively kills TNBC cells by ROS generation and sustained JNK activation. Here, by qualitatively and quantitatively monitoring the real-time movements of live cells we provided the first evidence that APE inhibited the migration of MDA-MB-231 and MDA-MB-468 TNBC cells and downregulated metalloproteinase-2 and metalloproteinase-9. In MDA-MB-231 cells APE decreased SMAD-2/3 and p-SMAD-2/3 levels, increased E-cadherin/N-cadherin protein ratio, induced the switch from N-cadherin to E-cadherin expression and greatly reduced vimentin levels. Confocal and scanning electron microscopy imaging of APE-treated MDA-MB-231 cells evidenced a significant cytoskeletal vimentin and filamentous actin reorganization and revealed considerable changes in cell morphology highlighting an evident transition from the mesenchymal to epithelial phenotype with decreased migratory features. Notably, all these events were reverted by N-acetyl-l-cysteine and JNK inhibitor SP600125 furnishing evidence that APE exerted its effects through the activation of ROS/JNK signaling. The overall data highlighted APE as a potential preventing agent for TNBC metastasis.
Tumour invasion is strongly influenced by microenvironment and, among other parameters, chemical stimuli play an important role. An innovative methodology for the quantitative investigation of chemotaxis in vitro by live imaging of morphology of cell spheroids, in 3D collagen gel, is presented here. The assay was performed by using a chemotactic chamber to impose a controlled gradients of nutrients (glucose) on spheroids, mimicking the chemotactic stimuli naturally occurring in the proximity of blood vessels. Different tumoral cell lines (PANC-1 and HT-1080) are compared to non-tumoral ones (NIH/3T3). Morphology response is observed by means a Time-lapse workstation equipped with an incubating system and quantified by image analysis techniques. Description of invasion phenomena was based on an engineering approach, based on transport phenomena concepts. As expected, NIH/3T3 spheroids are characterized by a limited tendency of cells to invade the surrounding tissue, unlike PANC-1 and HT-1080 that show relatively stronger response to gradients.
Surfactant-water mixtures display a complex rheological behaviour, with changes in parameters such as viscosity and moduli of several orders of magnitude as a consequence of phase changes, depending on their concentration and temperature: this criticism heavily affects different industrial processes. In our work, linear rheological behaviour of aqueous mixtures of a commercial anionic surfactant, sodium lauryl ether sulphate, is investigated in a range of temperature (30–60 °C) and surfactant concentration (20–72%wt) of technological relevance. Four phases with different texture are identified by polarised light microscopy: micellar, hexagonal, cubic and lamellar, all showing a shear-thinning behaviour. Rheological parameters of cubic phase show a net jump in a relatively narrow temperature range, suggesting a temperature-induced phase change. The systematic analysis of the rheological behaviour of this widely used surfactant system, reported here for the first time, can be of fundamental support for many industrial applications. Graphical Abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.