We analyzed a large number of immune response parameters from quarter milk samples with distinct bacteriological and quarter somatic cell count (qSCC) statuses. Furthermore, we sought to explore and identify displayed immune response patterns in milk samples from mammary glands with nonspecific mastitis. Thus, 92 quarter milk samples from 28 cows were stratified into 4 groups, as follows: (1) 49 culture-negative control quarters with a low qSCC (<1 × 10 5 cells/mL) from 19 dairy cows (so-called healthy quarters); (2) 15 culture-negative quarters with high qSCC (>2 × 10 5 cells/mL; so-called quarters with nonspecific mastitis) from 10 dairy cows; (3) 8 culture-positive quarters with low qSCC (noninflammatory quarters with low qSCC) from 5 dairy cows; and (4) 20 culture-positive quarters with high qSCC (so-called truly infected quarters) from 8 dairy cows. Using flow cytometry, we evaluated the percentage of milk neutrophils and their viability, intracellular reactive oxygen species production, phagocytosis, and the expression of CD62L, CD11b, and CD44 for each of the 4 quarter strata. Furthermore, the percentage of monocyte/macrophages, B cells, and T lymphocyte subsets were evaluated by flow cytometry. Milk samples from bacteriologically negative quarters (both with a low and elevated qSCC) had a lower qSCC than those with bacteriologically positive outcomes (both with a low and elevated qSCC). As expected, the healthy quarters showed the lowest percentage of neutrophils and also showed a higher percentage of milk monocytes/macrophages and lower percentage of T lymphocytes than truly infected quarters. The most prominent result of the present study is that quarters with nonspecific mastitis showed the highest percentage of milk CD4 + T lymphocytes. The healthy quarters had a lower percentage of apoptotic neutrophils than noninflammatory and truly infected quarters, although it did not differ from those from the quarters with nonspecific mastitis. Our study supports the role of differential cell counting in the diagnosis of mastitis, as the milk leukocyte populations markedly fluctuate under healthy and inflammatory conditions. Furthermore, an increase in milk CD4 + T cells was associated with nonspecific mastitis, suggesting an increase in this leukocyte subpopulation is correlated with low bacterial shedding. Our study allows us to go further in our understanding of mammary gland immunity, providing further insights on potential protective mammary gland immunity, which we hypothesize can open new avenues for the development of novel targets that can promote bovine udder health.
Swallowing difficulties are a common symptom of multiple sclerosis (MS). The early detection and treatment of dysphagia is critical to prevent complications, including poor nutrition, dehydration, and lung infections. Recently, transcranial direct current stimulation (tDCS) has been proven to be effective in ameliorating swallowing problems in stroke patients. In this pilot study, we aimed to assess safety and efficacy of transcranial direct current stimulation (tDCS) in the treatment of dysphagia in MS patients. We screened 30 patients by using the 10-item DYsphagia in MUltiple Sclerosis (DYMUS) questionnaire, and patients at risk for dysphagia underwent a clinical and fiberoptic endoscopic evaluation of swallowing (FEES). Six patients who presented with mild to moderate dysphagia underwent the experimental procedures. These consisted of 5 sessions of anodal tDCS applied in consecutive days over the right swallowing motor cortex. Patients were followed-up at 1 week, 1 month and 3 months after treatment, and changes in the Dysphagia Outcome and Severity Scale (DOSS) score between baseline and post-tDCS were assessed. Our results showed that in all patients, the tDCS treatment determined a mild but significant clinical benefit (one-point improvement in the DOSS score) lasting up to 1 month. In conclusion, our preliminary results show that anodal tDCS has therapeutic potential in the treatment of swallowing problems in patients suffering with MS. However, future double-blind, randomized, and sham-controlled studies are needed to confirm the present findings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.