S1P has been proposed to contribute to cancer progression by regulating tumor proliferation, invasion, and angiogenesis. We developed a biospecific monoclonal antibody to S1P to investigate its role in tumorigenesis. The anti-S1P mAb substantially reduced tumor progression and in some cases eliminated measurable tumors in murine xenograft and allograft models. Tumor growth inhibition was attributed to antiangiogenic and antitumorigenic effects of the antibody. The anti-S1P mAb blocked EC migration and resulting capillary formation, inhibited blood vessel formation induced by VEGF and bFGF, and arrested tumor-associated angiogenesis. The anti-S1P mAb also neutralized S1P-induced proliferation, release of proangiogenic cytokines, and the ability of S1P to protect tumor cells from apoptosis in several tumor cell lines, validating S1P as a target for therapy.
Agonist activation of a subset of G protein coupled receptors (GPCRs) stimulates cell proliferation, mimicking the better known effects of tyrosine kinase growth factors. Cell survival or apoptosis is also regulated via pathways initiated by stimulation of these same GPCRs. This review focuses on aspects of signaling by the lysophospholipid mediators, lysophosphatidic acid (LPA), and sphingosine 1 phosphate (S1P), which make these agonists uniquely capable of modulating cell growth and survival. The general features of GPCR coupling to specific G proteins, downstream effectors and signaling cascades are first reviewed. GPCR coupling to G(i) and Ras/MAPK or to G(q) and phospholipase generated second messengers are insufficient to regulate cell proliferation while G(12/13)/Rho engagement provides additional complementary signals required for cell proliferation. Survival is best predicted by coupling to G(i) pathways that regulate PI3K and Akt, but other signals generated through different G protein pathways are also implicated. The unique ability of LPA and S1P to concomitantly stimulate G(i), G(q), and G(12/13) pathways, given the proper complement of expressed LPA or S1P receptors, allows these receptors to support cell survival and proliferation. In pathophysiological situations, e.g., vascular disease, cancer, brain injury, and inflammation, components of the signaling cascade downstream of lysophospholipid receptors, in particular those involving Ras or Rho, may be altered. In addition, up or downregulation of LPA or S1P receptor subtypes, altering their ratio, and increased availability of the lysophospholipid ligands at sites of injury or inflammation, likely contribute to disease and may be important targets for therapeutic intervention.
Sphingosine-1-phospate (S1P) is a bioactive lysophospholipid signaling molecule that serves important roles in normal development and physiological processes, including modulating the immune, cardiovascular, and central nervous systems ( 1-4 ). S1P is a key player in the sphingolipid signaling cascade and is produced from ceramide (CER) and sphingosine (SPH) through the action of sphingosine kinase (SPHK). While CER and SPH are intracellular promoters of apoptosis, S1P has opposite action and, in general, protects cells from apoptotic stimuli. Several experimental fi ndings from independent research groups implicate S1P as a key mediator of multiple survival and growth-promoting pathways ( 5 ). The extracellular functions of S1P are initiated by the binding of the bioactive lipid to a set of fi ve G protein-coupled receptors (GPCRs) belonging to the S1P receptor family ( 6 ). The balance between CER/SPH levels versus S1P provides a rheostat that determines whether a cell is sent into the death Abstract Sphingosine-1-phosphate (S1P) is a pleiotropic bioactive lipid involved in multiple physiological processes. Importantly, dysregulated S1P levels are associated with several pathologies, including cardiovascular and infl ammatory diseases and cancer. This report describes the successful production and characterization of a murine monoclonal antibody, LT1002, directed against S1P, using novel immunization and screening methods applied to bioactive lipids. We also report the successful generation of LT1009, the humanized variant of LT1002, for potential clinical use. Both LT1002 and LT1009 have high affi nity and specifi city for S1P and do not cross-react with structurally related lipids. Using an in vitro bioassay, LT1002 and LT1009 were effective in blocking S1P-mediated release of the pro-angiogenic and prometastatic cytokine, interleukin-8, from human ovarian carcinoma cells, showing that both antibodies can outcompete S1P receptors in binding to S1P. In vivo anti-angiogenic activity of all antibody variants was demonstrated using the murine choroidal neovascularization model. Importantly, intravenous administration of the antibodies showed a marked effect on lymphocyte traffi cking. The resulting lead candidate, LT1009, has been formulated for Phase 1 clinical trials in cancer and age-related macular degeneration. The anti-S1P antibody shows promise as a novel, fi rst-in-class therapeutic acting as a "molecular sponge" to selectively deplete S1P from blood and other compartments where pathological S1P levels have been implicated in disease progression or in disorders where immune modulation may be benefi cial.
Evidence suggests a proinflammatory role of lysophosphatidic acid (LPA) in various pathologic abnormalities, including in the central nervous system. Herein, we describe LPA as an important mediator of inflammation after spinal cord injury (SCI) in zebrafish and mice. Furthermore, we describe a novel monoclonal blocking antibody raised against LPA that potently inhibits LPA's effect in vitro and in vivo. This antibody, B3, specifically binds LPA, prevents it from interacting with its complement of receptors, and blocks LPA's effects on the neuronal differentiation of human neural stem/progenitor cells, demonstrating its specificity toward LPA signaling. When administered systemically to mice subjected to SCI, B3 substantially reduced glial inflammation and neuronal death. B3-treated animals demonstrated significantly more neuronal survival upstream of the lesion site, with some functional improvement. This study describes the use of anti-LPA monoclonal antibody as a novel therapeutic approach for the treatment of SCI.
A subset of G-protein coupled receptors (GPCRs), including the thrombin receptor (PAR1), elicits mitogenic responses. Thrombin also activates Ras homolog gene family member A (RhoA) and activating protein (AP-1) -mediated gene expression in 1321N1 astrocytoma cells, whereas the nonmitogenic agonist carbachol does not. Transcriptomic analysis was used to explore differential gene induction by these agonists and revealed that the matricellular protein cysteine-rich 61 (Cyr61/CCN1) is selectively induced by thrombin. The ability of GPCR agonists to induce Cyr61 parallels their ability to activate RhoA; agonist-stimulated Cyr61 expression is inhibited by C3 toxin. When Cyr61 is down-regulated using short interfering RNA (siRNA) or short-hairpin RNA (shRNA), thrombin-induced DNA synthesis is significantly attenuated. When Cyr61 expression is induced, it appears in the extracellular compartment and on the cell surface. Extracellular Cyr61 interacts with alpha(5), alpha(6), and beta(1) integrins on these cells, and monoclonal antibodies directed against alpha(5) and beta(1) integrins inhibit thrombin-induced DNA synthesis. Functional blockade of Cyr61 with soluble heparin or anti-Cyr61 antibodies also inhibits thrombin-induced DNA synthesis. Thus Cyr61 is a highly inducible, secreted extracellular factor through which GPCR and RhoA signaling pathways engage integrins that contribute to GPCR-mediated proliferation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.