Chronic low-level lead exposure among low-income minority children is an urgent environmental justice issue. Addressing this ubiquitous urban public health crisis requires a new transdisciplinary paradigm. The primary goals of this work are to inform best practices for urban gardeners working in lead contaminated soils and to reimagine urban organic waste management schemes to produce compost, which when covering or mixed with urban soil, could minimize lead exposure. We investigate bulk and bioaccessible lead from five types of compost used in urban gardens in Boston, MA. We categorized them by feedstock and measured bulk elemental concentrations and physical characteristics. Our results show that different feedstocks exhibit unique geochemical fingerprints. While bulk lead concentrations in compost are a fraction of what is typical for urban soils, the bioaccessible lead fraction in compost is greater than the default parameters for the Integrated Exposure Uptake Biokinetic (IEUBK) model. The lack of geochemical differences across feedstocks for lead sorption to carbon indicates a similar sorption mechanism for all compost. This suggests that municipal compost would be suitable for capping lead contaminated urban soils. Risk assessment models should consider lead bioaccessibility, to prevent the underprediction of exposure risk, and should include compost along with soils as urban matrices. Based on the observed bioaccessibility in our compost samples, 170 mg/kg total lead in compost will yield the same bioaccessible lead as the IEUBK model predicts for the 400 mg/kg EPA soil lead benchmark. Local logistical challenges remain for interdisciplinary teams of city planners, exposure scientists, and urban agricultural communities to design organic waste collection practices to produce compost that will support urban agriculture and primary lead exposure prevention.
While the presence of legacy lead (Pb) in urban soil is well documented, less is known about the bioaccessibility, transport, and exposure pathways of urban soil Pb. We study Pb bioaccessibility in Roxbury and Dorchester, MA, urban gardens to assess exposure risk and identify remediation strategies, applicable locally and in urban gardens across the country. We work in partnership with The Food Project, which brings the goals and perspectives of local farmers to the center of the research process and enables efficient local application of results to reduce Pb exposure. We measure changes in Pb bioaccessibility as a function of growing material, grain size, and Pb source. In comparison to soils, compost has lower total Pb concentrations, has lower Pb solubility in gastric fluid, and limits fine particle resuspension. The mean bioaccessible Pb concentration of compost is 265 mg/kg, nearly an order of magnitude lower than that of soils, and compost contains 14% higher carbon content than soils, which may account for the observed 19% lower Pb bioaccessibility in compost. For all matrices (soil, raised bed fill, and compost) grain sizes <37 μm contain a disproportionate fraction of the total pool of bioaccessible Pb. Furthermore, the isotopic composition of Pb in the size fractions linked with resuspension and elevated blood lead levels is indicative of leaded gasoline and leaded paint even decades removed from the primary deposition of these sources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.