This study investigated the effect of restricting nasal breathing during a series of 20-m shuttle runs. Ten male participants (mean age = 21.7 ± 2.4 years, height = 1.80 ± 0.62 m, mass = 79.2 ± 10.4 kg, sum of 4 skinfolds = 54.5 ± 7.8 mm) were required to either (a) dive on the ground and complete a rolling sequence (condition = GRD) or (b) complete the shuttles while staying on their feet and tagging the line with 1 foot, at the end of each 20-m segment (condition = STD). The shuttle runs were completed with and without a nose clip (no clip = nc; with a clip = clip) under 4 different trial conditions in a randomized order (GRDnc; GRDclip; STDnc; and STDclip), requiring the participants to return on 4 separate occasions separated by 5-7 days. Heart rate was recorded throughout each trial, and the rate of perceived exertion (RPE) was measured at the completion of each shuttle sequence. Pretrial and posttrial lactate and respiratory function measures were also recorded. The general linear model with repeated measures analysis indicated that there was a significant effect for Roll (GRD > STD) (p ≤ 0.05) but not for Clip (p > 0.05) on total time to completion in the trials. There was no significant interaction of the conditions (Roll × Clip) for RPE (p > 0.05). Similarly, there was no significant effect for blood lactate measured 3 minutes post the last shuttle for Roll (p > 0.05) and Clip (p > 0.05). There was a significant main effect on the HR across all 6 time points (i.e., pre, intervals 1-4 and 10 minutes post) (p ≤ 0.05) and for Roll (GRD > STD) (p ≤ 0.05), but not for Clip (p > 0.05). No significant effect of Roll or Clip was found for any of the recorded ventilation measures (p > 0.05). On the basis of these findings, the use of restricted nasal breathing, while performing a high-intensity shuttle sequence as a method of increasing the acute training effect on athletes, is questionable, so strength and conditioning coaches should carefully consider their rationale for using such a training strategy.
This study investigated the effects of six weeks of normobaric hypoxic training on transcriptional expression of the genes associated with mitochondrial and glycolytic activities in Thoroughbred horses. Eight horses were divided into two groups of four. They completed an identical incremental, moderate intensity training program, except that one group trained in a hypoxic chamber with 15% oxygen for 30 min on alternate days except Sundays (HT), while the other group trained in normal air (NC). Prior to and post training, heart rate and blood lactate were measured during an incremental treadmill test. Muscle biopsy samples were taken prior to and 24 h post the training period for qPCR analysis of mRNA changes in VEGF, PPARγ, HIF-1α, PGC-1α, COX4, AK3, LDH, PFK, PKm and SOD-2. No significant differences between the HT and NC were detected by independent-samples t-test with Bonferroni correction for multiple comparisons (P>0.05) in relative changes of mRNA abundance. There were no significant differences between groups for heart rate and blood lactate during the treadmill test. The outcomes indicated that this hypoxia training program did not cause a significant variation in basal level expression of the selected mRNAs in Thoroughbreds as compared with normoxic training.
Five weeks of low-moderate intensity aquatic exercise significantly improved exercise capacity, RPE and fatigue. This exercise mode exercise may potentially be a manageable and safe physical activity for CFS/ME patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.