. Phototransformation of the sunlight filter benzophenone-3 (2-hydroxy-4-methoxybenzophenone) under conditions relevant to surface waters. Sci. Total Environ. 2013, 463-464, 243-251. DOI: 10.1016/j.scitotenv.2013 You may download, copy and otherwise use the AAM for non-commercial purposes provided that your license is limited by the following restrictions:(1) You may use this AAM for non-commercial purposes only under the terms of the CC-BY-NC-ND license.(2) The integrity of the work and identification of the author, copyright owner, and publisher must be preserved in any copy. AbstractThe UV filter benzophenone-3 (BP3) has UV photolysis quantum yield s −1 ), the CO 3 −• degradation process could be somewhat important for DOC < 1 mg C L −1 . The predicted half-life time of BP3 in surface waters under summertime conditions would be of some weeks, and it would increase with increasing depth and DOC. BP3 transformation intermediates were detected upon reaction with • OH. Two methylated derivatives were tentatively identified, and they were probably produced by reaction between BP3 and fragments arising from photodegradation. The other intermediates were benzoic acid (maximum concentration ∼10% of initial BP3) and benzaldehyde (1%).
The interest towards microcapsules based on non-toxic, biodegradable and biocompatible polymers, such as proteins, is increasing considerably. In this work, microcapsules were prepared using water soluble keratin, known as keratoses, with the aim of encapsulating hydrophilic molecules. Keratoses were obtained via oxidizing extraction of pristine wool, previously degreased by Soxhlet. In order to better understand the shell part of microcapsules, pristine wool and obtained keratoses were investigated by FT-IR, gel-electrophoresis and HPLC. Production of the microcapsules was carried out by a sonication method. Thermal properties of microcapsules were investigated by DSC. Microencapsulation and dye encapsulation yields were obtained by UV-spectroscopy. Morphological structure of microcapsules was studied by light microscopy, SEM, and AFM. The molecular weights of proteins analyzed using gel-electrophoresis resulted in the range of 38-62kDa. The results confirmed that the hydrophilic dye (Telon Blue) was introduced inside the keratoses shells by sonication and the final microcapsules diameter ranged from 0.5 to 4µm. Light microscope investigation evidenced the presence of the dye inside the keratoses vesicles, confirming their capability of encapsulating hydrophilic molecules. The microcapsule yield and dye encapsulation yield were found to be 28.87±3% and 83.62±5% respectively.
Conducting linen fabrics were prepared by the in situ oxidative polymerization of pyrrole using ferric chloride as the oxidant and anthraquinone-2,6-disulfonic acid disodium salt as the dopant to enhance conductivity. The effect of the pyrrole concentration on the final performance and properties of the conducting fabrics was evaluated. Scanning electron microscopy and light microscopy showed a polypyrrole layer deposited on the fiber surface associated with penetration into the bulk fiber at the highest concentrations of pyrrole. Saturation of the amorphous domains of the cellulose structure and coating of the fiber surface resulted in good electrical properties, heat development by the Joule effect and reduced moisture adsorption. The mechanical properties and electrical conductivity of the fabrics were affected by the strong acid conditions of the treatment, but significant electrical properties were achieved while preserving up to 70% of the original tensile strength.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.