Extracellular vesicles (EVs)—particularly exosomes and microvesicles (MVs)—are attracting considerable interest in the cardiovascular field as the wide range of their functions is recognized. These capabilities include transporting regulatory molecules including different RNA species, lipids, and proteins through the extracellular space including blood and delivering these cargos to recipient cells to modify cellular activity. EVs powerfully stimulate angiogenesis, and can protect the heart against myocardial infarction. They also appear to mediate some of the paracrine effects of cells, and have therefore been proposed as a potential alternative to cell-based regenerative therapies. Moreover, EVs of different sources may be useful biomarkers of cardiovascular disease identities. However, the methods used for the detection and isolation of EVs have several limitations and vary widely between studies, leading to uncertainties regarding the exact population of EVs studied and how to interpret the data. The number of publications in the exosome and MV field has been increasing exponentially in recent years and, therefore, in this ESC Working Group Position Paper, the overall objective is to provide a set of recommendations for the analysis and translational application of EVs focussing on the diagnosis and therapy of the ischaemic heart. This should help to ensure that the data from emerging studies are robust and repeatable, and optimize the pathway towards the diagnostic and therapeutic use of EVs in clinical studies for patient benefit.
Despite improvements in modern cardiovascular therapy, the morbidity and mortality of ischaemic heart disease (IHD) and heart failure (HF) remain significant in Europe and worldwide. Patients with IHD may benefit from therapies that would accelerate natural processes of postnatal collateral vessel formation and/or muscle regeneration. Here, we discuss the use of cells in the context of heart repair, and the most relevant results and current limitations from clinical trials using cell-based therapies to treat IHD and HF. We identify and discuss promising potential new therapeutic strategies that include ex vivo cell-mediated gene therapy, the use of biomaterials and cell-free therapies aimed at increasing the success rates of therapy for IHD and HF. The overall aim of this Position Paper of the ESC Working Group Cellular Biology of the Heart is to provide recommendations on how to improve the therapeutic application of cell-based therapies for cardiac regeneration and repair.
Ischaemic heart disease and the heart failure that often results, remain the leading causes of death and disability in Europe and worldwide. As such, in order to prevent heart failure and improve clinical outcomes in patients presenting with an acute ST-segment elevation myocardial infarction and patients undergoing coronary artery bypass graft surgery, novel therapies are required to protect the heart against the detrimental effects of acute ischaemia/reperfusion injury (IRI). During the last three decades, a wide variety of ischaemic conditioning strategies and pharmacological treatments have been tested in the clinic-however, their translation from experimental to clinical studies for improving patient outcomes has been both challenging and disappointing. Therefore, in this Position Paper of the European Society of Cardiology Working Group on Cellular Biology of the Heart, we critically analyse the current state of ischaemic conditioning in both the experimental and clinical settings, provide recommendations for improving its translation into the clinical setting, and highlight novel therapeutic targets and new treatment strategies for reducing acute myocardial IRI.
Coronary heart disease (CHD) is the leading cause of death and disability worldwide. Despite current therapy, the morbidity and mortality for patients with CHD remains significant. The most important manifestations of CHD arise from acute myocardial ischaemia-reperfusion injury (IRI) in terms of cardiomyocyte death and its long-term consequences. As such, new therapeutic interventions are required to protect the heart against the detrimental effects of acute IRI and improve clinical outcomes. Although a large number of cardioprotective therapies discovered in pre-clinical studies have been investigated in CHD patients, few have been translated into the clinical setting, and a significant number of these have failed to show any benefit in terms of reduced myocardial infarction and improved clinical outcomes. Because of this, there is currently no effective therapy for protecting the heart against the detrimental effects of acute IRI in patients with CHD. One major factor for this lack of success in translating cardioprotective therapies into the clinical setting can be attributed to problems with the clinical study design. Many of these clinical studies have not taken into consideration the important data provided from previously published pre-clinical and clinical studies. The overall aim of this ESC Working Group Cellular Biology of the Heart Position Paper is to provide recommendations for optimizing the design of clinical cardioprotection studies, which should hopefully result in new and effective therapeutic interventions for the future benefit of CHD patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.