Three-dimensional (3D) hydrogel printing enables production of volumetric architectures containing desired structures using programmed automation processes. Our study reports a unique method of resolution enhancement purely relying on post-printing treatment of hydrogel constructs. By immersing a 3D-printed patterned hydrogel consisting of a hydrophilic polyionic polymer network in a solution of polyions of the opposite net charge, shrinking can rapidly occur resulting in various degrees of reduced dimensions comparing to the original pattern. This phenomenon, caused by complex coacervation and water expulsion, enables us to reduce linear dimensions of printed constructs while maintaining cytocompatible conditions in a cell type-dependent manner. We anticipate our shrinking printing technology to find widespread applications in promoting the current 3D printing capacities for generating higher-resolution hydrogel-based structures without necessarily having to involve complex hardware upgrades or other printing parameter alterations.
Renal organic anion transport systems play an important role in the elimination of drugs, toxic compounds, and their metabolites, many of which are potentially harmful to the body. The renal proximal tubule is the primary site of carrier-mediated transport from blood to urine of a wide variety of anionic substrates. Recent studies have shown that organic anion secretion in renal proximal tubule is mediated by distinct sodium-dependent and sodium-independent transport systems. Knowledge of the molecular identity of these transporters and their substrate specificity has increased considerably in the past few years by cloning of various carrier proteins. However, a number of fundamental questions still have to be answered to elucidate the participation of the cloned transporters in the overall tubular secretion of anionic xenobiotics. This review summarizes the latest knowledge on molecular and pharmacological properties of renal organic anion transporters and homologs, with special reference to their nephron and plasma membrane localization, transport characteristics, and substrate and inhibitor specificity. A number of the recently cloned transporters, such as the p-aminohippurate/dicarboxylate exchanger OAT1, the anion/sulfate exchanger SAT1, the peptide transporters PEPT1 and PEPT2, and the nucleoside transporters CNT1 and CNT2, are key proteins in organic anion handling that possess the same characteristics as has been predicted from previous physiological studies. The role of other cloned transporters, such as MRP1, MRP2, OATP1, OAT-K1, and OAT-K2, is still poorly characterized, whereas the only information that is available on the homologs OAT2, OAT3, OATP3, and MRP3-6 is that they are expressed in the kidney, but their localization, not to mention their function, remains to be elucidated.
. Role of NO in endothelin-regulated drug transport in the renal proximal tubule. Am J Physiol Renal Physiol 282: F458-F464, 2002; 10.1152/ajprenal.00173.2001.-We previously demonstrated in intact killifish renal proximal tubules that endothelin (ET), acting through an ETB receptor and protein kinase C (PKC), reduced transport mediated by multidrug resistance-associated protein 2 (Mrp2), i.e., luminal accumulation of fluorescein methotrexate (FL-MTX) (Masereeuw R, Terlouw SA, Van Aubel RAMH, Russel FGM, and Miller DS. Mol Pharmacol 57: 59-67, 2000). In the present study, we used confocal microscopy and quantitative image analysis to measure Mrp2-mediated transport of FL-MTX in killifish tubules as an indicator of the status of this ET-fired, intracellular signaling pathway. Exposing tubules to sodium nitroprusside (SNP), a nitric oxide (NO) donor, signaled a reduction in luminal accumulation of FL-MTX, which suggested pathway activation. N G -monomethyl-L-arginine (L-NMMA), an NO synthase inhibitor, blocked the action of ET-1 on transport. Because SNP effects on transport were blocked by bisindoylmaleide, a PKC-selective inhibitor, but not by RES-701-1, an ET B-receptor antagonist, generation of NO occurred after ET B receptor signaling but before PKC activation. NO generation was implicated in the actions of several nephrotoxicants, i.e., diatrizoate, gentamicin, amikacin, HgCl 2, and CdCl 2, each of which decreased Mrp2-mediated transport by activating ET signaling. For each nephrotoxicant, decreased FL-MTX transport was prevented when tubules were exposed to L-NMMA. ET-1 and each nephrotoxicant stimulated NO production by the tubules, as determined by a fluorescencebased assay. Together, the data show that NO generation follows ET binding to the basolateral ET B receptor and that, in activating the ET-signaling pathway, nephrotoxicants produce NO, a molecule that could contribute to subsequent toxic effects. multidrug resistance-associated protein 2; calcium; endothelin signaling; protein kinase C; xenobiotic transport; nitric oxide METABOLISM AND EXCRETION provide a first line of defense against the wide variety of potentially toxic chemicals to which we are continually exposed. In the kidney, the proximal tubule is responsible for the excretory transport from blood to urine of xenobiotics, xenobiotic metabolites, and waste products of metabolism. As a result of its rich transport function, the proximal tubule is also an important target for toxic effects (2, 27).To accomplish this excretory function, epithelial cells in the proximal tubule possess multiple plasma membrane transporters that use ATP and transmembrane ion gradients to drive active drug secretion into urine. Among the proteins implicated in this process is a member of the ATP-binding cassette superfamily of membrane transporters: multidrug resistance protein 2 (Mrp2). This transport protein is present at high levels in the luminal membrane of proximal tubule cells and handles a wide range of chemicals, from large, lipophilic organic anions to...
Nephropathic cystinosis is a severe monogenic kidney disorder caused by mutations in CTNS, encoding the lysosomal transporter cystinosin, resulting in lysosomal cystine accumulation. The sole treatment, cysteamine, slows down the disease progression, but does not correct the established renal proximal tubulopathy. Here, we developed a new therapeutic strategy by applying omics to expand our knowledge on the complexity of the disease and prioritize drug targets in cystinosis. We identified alpha-ketoglutarate as a potential metabolite to bridge cystinosin loss to autophagy, apoptosis and kidney proximal tubule impairment in cystinosis. This insight combined with a drug screen revealed a bicalutamidecysteamine combination treatment as a novel dual-target pharmacological approach for the phenotypical correction of cystinotic kidney proximal tubule cells, patient-derived kidney tubuloids and cystinotic zebrafish.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.