Lymphocyte differentiation from naive CD4+ T cells into mature Th1, Th2, Th17, or T regulatory cell (Treg) phenotypes has been considered end stage in character. In this study, we demonstrate that dendritic cells (DCs) activated with a novel immune modulator B7-DC XAb (DCXAb) can reprogram Tregs into T effector cells. Down-regulation of FoxP3 expression after either in vitro or in vivo Treg-DCXAb interaction is Ag-specific, IL-6-dependent, and results in the functional reprogramming of the mature T cell phenotype. The reprogrammed Tregs cease to express IL-10 and TGFβ, fail to suppress T cell responses, and gain the ability to produce IFN-γ, IL-17, and TNF-α. The ability of IL-6+ DCXAb and the inability of IL-6−/− DCXAb vaccines to protect animals from lethal melanoma suggest that exogenously modulated DC can reprogram host Tregs. In support of this hypothesis and as a test for Ag specificity, transfer of DCXAb into RIP-OVA mice causes a break in immune tolerance, inducing diabetes. Conversely, adoptive transfer of reprogrammed Tregs but not similarly treated CD25− T cells into naive RIP-OVA mice is also sufficient to cause autoimmune diabetes. Yet, treatment of normal mice with B7-DC XAb fails to elicit generalized autoimmunity. The finding that mature Tregs can be reprogrammed into competent effector cells provides new insights into the plasticity of T cell lineage, underscores the importance of DC-T cell interaction in balancing immunity with tolerance, points to Tregs as a reservoir of autoimmune effectors, and defines a new approach for breaking tolerance to self Ags as a strategy for cancer immunotherapy.
The human IgM B7-DC XAb protects mice from tumors in both therapeutic and prophylactic settings. Its mechanism of action is mediated by its binding to B7-DC/PD-L2 molecules on the surface of dendritic cells (DCs) to induce a multimolecular cap and subsequent activation of signaling cascades that determine a unique combination of DC phenotypes. One such phenotype, the B7-DC XAb-induced antigen accumulation in mTLR-matured DCs, has been linked to signaling through TREM-2, but the signals required for other DC phenotypes critical for the therapeutic effects in animal models remain unclear. Here, FRET and co-immunoprecipitation studies show that CD40 is recruited to the multi-molecular complex by B7-DC XAb. Signals emanating from CD40 are important, as CD40−/− DCs treated with B7-DC XAb (DCXAb) activated DAP12, but failed to activate NFκB, and were not protected from cell death upon cytokine withdrawal or treatment with Vitamin D3. CD40−/− DCXAb also failed to secrete IL-6 and were unable to support the conversion of T regulatory cells into IL-17+ effector T cells in vitro. Importantly, the expression of CD40 was required for the overall ability of B7-DC XAb to induce anti-tumor CTL, to provide protection from a number of tumor types, and for DCXAb to be effective anti-tumor vaccines in vivo. These results indicate that B7-DC XAb modulation of DC phenotypes is through its ability to indirectly recruit common signaling molecules and elements of their endogenous signaling pathways through targeted binding to a cell-specific surface determinant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.